C

CFSteel

Версия 4.3

Том II

Верификационные расчёты

НПК Дельта Инжиниринг оставляет за собой право на внесение изменений в данный документ без предварительного уведомления.

Никакая часть данного документа не может быть воспроизведена или передана в любой форме и любыми способами в каких-либо целях без письменного согласия НПК Дельта Инжиниринг.

© 2008 – 2022 НПК Дельта Инжиниринг с сохранением всех прав

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. СЕЧЕНИЕ
1.1. Вычисление геометрических характеристик полного сечения
1.2. Вычисление геометрических характеристик эффективного сечения 16
1.2.1. Вычисление геометрических характеристик эффективного сечения С- образного профиля в соответсвии с СП 260.1325800.2016
1.2.2. Вычисление геометрических характеристик эффективного сечения С- образного профиля при сжатии в соответствии с ЕСЗ
1.2.3. Вычисление геометрических характеристик эффективного сечения С- образного профиля
1.2.4. Вычисление геометрических характеристик эффективного сечения С- образного профиля при изгибе относительно оси наибольшей жёсткости в соответствии с ЕСЗ
1.2.5. Вычисление геометрических характеристик эффективного сечения Швеллера при сжатии в соответствии с ЕСЗ
2. ЭЛЕМЕНТЫ 41
2.1. Растяжение
2.2. Сжатие
2.2.1. Устойчивость сжатого элемента С-образного сечения в соответствии с СП 260.1325800.2016
2.2.2. Устойчивость сжатых элементов в соответствии с ЕС3
2.2.2.1. Расчёт несущей способности по устойчивости сжатого элемента С- образного сечения77
2.2.2.2. Проверка устойчивости сжатого элемента С-образного сечения
2.2.3. Устойчивость сжатых элементов в соответствии с AISI S100 Specification80
2.2.3.1. Определение несущей способности сжатого элемента из спаренных С-образных профилей80
2.3. Сжатие с изгибом
2.3.1. Сжатый с изгибом элемент из С-образного профиля по СП 260.1325800.2016
2.3.2. Сжатый с изгибом элемент из спаренных С-образных профилей по СП 260.1325800.2016
2.3.3. Сжатый с изгибом элемент из спаренных С-образных профилей по ЕС3131
ЛИТЕРАТУРА

ВВЕДЕНИЕ

Программа CFSteel предназначена для расчёта конструктивных элементов из стальных тонкостенных холодногнутых профилей, вычисления геометрических характеристик сечений, а также расчёта ферм из холодногнутых профилей.

В данном документе приведены результаты расчётов в программе, которые сопоставляются с результатами расчётов, выполненных авторами программы ручным способом и/или данными расчётов из других источников, а также результатами испытаний, приведёнными в научно-технической литературе.

Том II «Верификационные расчёты» является составной частью документации к программе CFSteel.

В Разделе 1 приведены расчёты геометрических характеристик сечений тонкостенных холодногнутых профилей. Первая часть Раздела посвящена расчётам характеристик полных (нередуцированных) сечений. В табличной форме приводится сравнение результатов, полученных в программе, с данными, представленными в документах различных производителей холодногнутых профилей. Следует иметь ввиду, что в последних, как правило, не оговаривается, какие допущения приняты при расчёте геометрических характеристик. Например, учитываются ли закругления в местах гиба, или приняты какие-либо упрощения. В некоторых источниках не приводятся радиусы закругления. В CFSteel геометрические характеристики сечений вычисляются с учётом закруглений в местах гиба без упрощений. Исключение составляют *момент инерции при свободном кручении, секторальный момент инерции* и *положение центра изгиба*, которые определяются в соответствии с Приложением С EN 1993-1-3 без учёта закругления.

Во второй части Раздела 1 приводятся расчёты геометрических характеристик эффективных сечений. Представлены пошаговые «ручные» вычисления параметров эффективных сечений в сравнении с аналогичными расчётами, приведёнными в различных литературных источниках и в программе.

В Разделе 2 представлены расчёты конструктивных элементов из холодногнутых профилей по различным нормам: СП 260.1325800.2016, Eurocode 3 и североамериканским нормам North American Specification (AISI S100). Приведено сравнение результатов, полученных ручным расчётом по различным методикам, с результатами CFSteel, а также с экспериментальными данными, приведёнными в научно-технической литературе.

Данный документ является общим *ознакомительным вариантом* Верификационных расчётов, которые здесь представлены в *сокращенном* виде. При поставке программного продукта CFSteel зарегистрированным пользователям передаётся полный вариант Верификационных расчётов, который в совокупности с материалами, изложенными в документах: CFSteel: Том I. Руководство пользователя и CFSteel: Том III. CFSTruss. Расчёт ферм из стальных тонкостенных холодногнутых профилей, представляет собой базу знаний.

С уважением, коллектив разработчиков CFSteel

www.CFSteel.ru deltaing@mail.ru

Введение

1. СЕЧЕНИЕ

1.1. Вычисление геометрических характеристик полного сечения

В Таблице 1.1.1 представлено сравнение геометрических характеристик С-образных сечений, приведённых в Техническом Руководстве компании Руукки [28], с результатами расчёта в программе CFSteel. В [28] не указан радиус закругления в местах гиба. В CFSteel принято: радиус закругления r = 3 мм, расчётная толщина $t = t_{nom} - t_{coat}$, $t_{coat} = 0,04 \text{ мм}$ для класса цинкования 275 z/m^2 . Геометрические характеристики в программе вычисляются с учётом закругления в местах гиба без упрощений. Количество знаков после запятой принято таким же, как в [28].

Cross-	Height	Thic	Width	Width	Fold	Source			Properties	s of gross c	ross-section	1	
section	h	kness	of	of	С		Weight,	Cross-	Centre of	Centre of	Moment	Section	Radius
		t _{nom}	wide	narrow			g	section	gravity,	gravity,	of	modulus,	of
			flange,	flange,				area,	Y _p	Z_p	inertia, I _y	W_y	gyration,
			А	В				Ag					iy
	mm	mm	mm	mm	mm		kg/m	cm ²	mm	mm	cm ⁴	cm ³	cm
						Ruukki	1,63	2,03	14,70	50,40	31,155	6,124	3,918
		1	45	39	18	CFSteel	1,69	2,02	14,77	51,39	31,23	6,077	3,936
						%	3,7	0,5	0,5	2,0	0,2	0,8	0,5
						Ruukki	1,96	2,45	14,70	50,40	37,607	7,378	3,918
		1,2	45	39	18	CFSteel	2,02	2,42	14,78	51,39	37,372	7,27	3,926
C100	100					%	3,1	1,2	0,5	2,0	0,6	1,5	0,2
C100	100					Ruukki	2,45	3,08	14,70	50,40	47,262	9,244	3,917
		1,5	46	40	18	CFSteel	2,52	3,06	15,19	51,39	47,06	9,158	3,922
						%	2,9	0,6	3,3	2,0	0,4	0,9	0,1
						Ruukki	3,27	4,13	14,70	50,40	63,289	12,319	3,915
		2	47	41	18	CFSteel	3,33	4,1	15,19	51,39	62,6	12,182	3,908
						%	1,8	0,7	3,3	2,0	1,1	1,1	0,2
						Ruukki	1,81	2,22	13,40	60,50	47,935	7,857	4,647
		1	45	39	18	CFSteel	1,86	2,21	13,53	61,53	47,956	7,794	4,660
						%	2,8	0,5	1,0	1,7	0,0	0,8	0,3
						Ruukki	2,17	2,68	13,40	60,50	57,866	9,469	4,647
		1,2	45	39	18	CFSteel	2,21	2,66	13,54	61,53	57,441	9,335	4,650
C120	120					%	1,8	0,7	1,0	1,7	0,7	1,4	0,1
C120	120					Ruukki	2,71	3,37	13,40	60,50	72,727	11,871	4,646
		1,5	46	40	18	CFSteel	2,76	3,35	13,93	61,53	72,374	11,763	4,647
						%	1,8	0,6	4,0	1,7	0,5	0,9	0,0
						Ruukki	3,61	4,52	13,40	60,50	97,403	15,834	4,642
		2	47	41	18	CFSteel	3,65	4,49	13,92	61,52	96,411	15,67	4,633
						%	1,1	0,7	3,9	1,7	1,0	1,0	0,2
						Ruukki	2,04	2,52	12,00	75,50	81,872	10,779	5,700
		1	45	39	18	CFSteel	2,1	2,5	12,00	76,70	81,442	10,618	5,712
						%	2,9	0,8	0,0	1,6	0,5	1,5	0,2
						Ruukki	2,45	3,04	12,00	75,50	98,841	12,995	5,702
		1,2	45	39	18	CFSteel	2,5	3	12,00	76,70	97,651	12,731	5,700
C150	150					%	2,0	1,3	0,0	1,6	1,2	2,0	0,0
						Ruukki	3,06	3,82	12,00	75,50	124,239	16,302	5,703
		1,5	46	40	18	CFSteel	3,12	3,79	12,40	76,70	123,09	16,049	5,699
						%	2,0	0,8	3,3	1,6	0,9	1,6	0,1
		2	47	41	10	Ruukki	4,08	5,13	14,70	50,40	63,289	12,319	5,696
		2	47	41	18	CFSteel	4,13	5,08	15,19	51,39	62,6	12,182	5,686

Таблица 1.1.1 - С-образные профили. Сопоставление результатов, полученных в CFSteel, с данными, приведёнными в Техническом Руководстве компании Руукки [28]

						%	1,2	1,0	3,3	2,0	1,1	1,1	0,2
						Ruukki	4,36	5,5	20,40	101,10	333,533	32,753	7,787
		1,5	70	62	26	CFSteel	4,46	5,42	20,18	102,12	326,785	32,001	7,761
						%	2,3	1,5	1,1	1,0	2,0	2,3	0,3
						Ruukki	5,81	7,38	20,40	101,10	447,103	43,798	7,784
		2	71	63	26	CFSteel	5,91	7,27	20,56	102,11	436,661	42,762	7,748
						%	1,7	1,5	0,8	1,0	2,3	2,4	0,5
C200	200					Ruukki	7.26	9.25	20.40	101.10	560.349	54.376	7.783
		2,5	72	64	26	CFSteel	7,36	9,12	20,95	102,11	545,501	53,422	7,734
						%	1,4	1,4	2,7	1,0	2,6	1,8	0,6
						Ruukki	8.71	11.13	20.40	101.10	673.275	65.63	7.778
		3	73	65	26	CFSteel	8.81	10.96	21.33	102.11	653,304	63.982	7,721
		_				%	1.1	1.5	4.6	1.0	3.0	2.5	0.7
						Ruukki	4.92	6.23	18.00	126.30	565.589	44.516	9.528
		1.5	70	62	26	CESteel	5.06	6.15	17.87	127.34	554.73	43,563	9,494
		1,0		02	20	%	2.8	1.3	0.7	0.8	1.9	2.1	0.4
						Ruukki	6.56	8 36	18.00	126.30	758 256	59 562	9 524
		2	71	63	26	CESteel	671	8.25	18.24	120,30	741 894	58 263	9 481
		-	/1	05	20	0/2	23	13	13	0.8	2.2	2 2	0.5
C250	250					Ruukki	8.2	10.48	18.00	126.30	950 41	74 508	9 523
		25	72	64	26	CESteel	8 36	10,40	18,00	120,30	927 625	72.85	9.467
		2,5	12	04	20		2.0	10,35	3.3	127,55	24	2,05	0.6
				-		70 Duukki	0.84	12.61	18.00	126.30	2,4	80.356	0,0
		2	72	65	26	CEStool	9,04	12,01	18,00	120,30	1142,033	87,330	9,317
		3	15	05	20		9,99	12,44	10,97	127,55	2.6	07,525	9,434
				1		70 Duultiri	I,J	7.52),4 22.20	151 20	2,0	2,3	11 524
		1.5	20	0.1	26		5,95	7,52	22,30	151,50	998,75	05,088	11,524
		1,5	89	81	20	CFSteel	0,12	7,44	22,19	152,52	985,224	04,549	11,496
				-		%	2,9	1,1	0,5	0,7	1,0	1,/	0,2
		2	00		26	CEQ: 1	7,93	10,08	22,30	151,30	1339,303	87,94	11,527
		2	90	82	20	CFSteel	8,11	9,98	22,55	152,52	1315,098	80,377	11,482
C300	300					%	2,3	1,0	1,1	0,7	1,8	1,8	0,4
		2.5	0.1	0.2	26	RUUKKI	9,91	12,65	22,30	151,30	16/9,111	110,071	11,521
		2,5	91	83	26	CFSteel	10,08	12,49	22,74	152,03	1640,721	107,92	11,469
						%	1,/	1,3	2,0	0,5	2,3	2,0	0,5
						Ruukki	11,89	15,21	22,30	151,30	2018,181	132,08	11,519
		3	92	84	26	CFSteel	12,09	15,04	23,17	152,31	1974,149	129,607	11,455
				-		%	1,7	1,1	3,9	0,7	2,2	1,9	0,6
						Ruukki	8,87	11,2	21,20	176,20	1956,978	110,463	13,219
		2,0	90	82	30	CFSteel	9,04	11,12	21,53	177,43	1933,567	108,974	13,189
						%	1,9	0,7	1,6	0,7	1,2	1,3	0,2
						Ruukki	11,09	14,05	21,20	176,20	2453,684	138,303	13,215
C350	350	2,5	91	83	30	CFSteel	11,26	13,94	21,89	177,43	2420,139	136,298	13,176
						%	1,5	0,8	3,3	0,7	1,4	1,4	0,3
						Ruukki	13,31	16,9	21,20	176,20	2949,382	166,008	13,211
		3,0	92	84	30	CFSteel	13,47	16,76	22,11	177,43	2903,995	163,689	13,163
		1			1	%	1,2	0,8	4,3	0,7	1,5	1,4	0,4

В Таблице 1.1.2 представлено сравнение значений геометрических характеристик Собразных сечений, полученных в CFSteel, со значениями, приведёнными в Техническом Руководстве ассоциации Steel Stud Manufactures Association [30]. Геометрические характеристики в программе вычисляются с учётом закругления в местах гиба без упрощений за исключением момента инерции при свободном кручении I_t (в Таблице 1.1.2 - J_t), секториального момента инерции I_w (в Таблице 1.1.2 - C_w) и расстояния между центом тяжести и центром изгиба сечения (в Таблице - X_0). Данные характеристики вычисляются в предположении острых углов (без закруглений) в соответствии с Приложением С EN 1993-1-3 [4].

Section	Height h	Flange width b _f	Lip width C	Des thick t	ign ness	Corn er radii r	Source	A	area A	Mon in	nent of ertia I _x	Sect mod S	tion ulus x	Rad gur	lius of ration R _x	Mor in	ment of Ty Iy	Rad gur	ius of ation R _y	St. V tors cons (x1	Venant sional stant J _t 1000)	To wa cons	rsional arping stant C _w	Distar the she to the	ar center centroid X ₀
	mm	mm	mm	in	mm	mm		in ²	cm ²	in ⁴	cm^4	in ³	cm ³	in	cm	in ⁴	cm ⁴	in	cm	in ⁴	cm ⁴	in ⁶	cm ⁶	in	cm
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
400S137-33	101,6	34,8	9,5	0,0346	0,88	1,94	SSMA	0,249	1,606	0,603	25,097	0,301	4,932	1,556	3,952	0,061	2,539	0,496	1,260	0,099	4,120	0,204	54,876	0,965	2,451
							CFSteel		1,607		25,068		4,935		3,950		2,527		1,254		4,241		54,209		2,439
							%		0,1		0,1		0,1		0,1		0,5		0,5		2,9		1,2		0,5
400S137-43	101,6	34,8	9,5	0,0451	1,15	1,81	SSMA	0,323	2,083	0,776	32,297	0,388	6,358	1,551	3,940	0,078	3,246	0,491	1,247	0,219	9,115	0,257	69,133	0,954	2,423
							CFSteel		2,087		32,344		6,367		3,936		3,220		1,242		9,409		68,575		2,410
							%		0,2		0,1		0,1		0,1		0,8		0,4		3,2		0,8		0,5
400S137-54	101,6	34,8	9,5	0,0566	1,44	2,16	SSMA	0,401	2,586	0,953	39,664	0,477	7,817	1,542	3,917	0,094	3,912	0,484	1,229	0,428	17,813	0,311	83,659	0,94	2,388
							CFSteel		2,585		39,631		7,801		3,916		3,878		1,225		18,358		82,900		2,375
							%		0,1		0,1		0,2		0,0		0,9		0,4		3,1		0,9		0,5
400S137-68	101,6	34,8	9,5	0,0713	1,81	2,72	SSMA	0,497	3,206	1,165	48,487	0,582	9,537	1,531	3,889	0,112	4,661	0,475	1,207	0,842	35,044	0,375	100,875	0,922	2,342
							CFSteel		3,199		48,339		9,516		3,887		4,620		1,202		36,164		99,587		2,330
							%		0,2		0,3		0,2		0,0		0,9		0,4		3,2		1,3		0,5
400S137-97	101,6	34,8	9,5	0,1017	2,58	3,87	SSMA	0,686	4,425	1,557	64,802	0,779	12,765	1,507	3,828	0,142	5,910	0,454	1,153	2,365	98,431	0,486	130,734	0,885	2,248
							CFSteel		4,412		64,600		12,717		3,826		5,857		1,152		102,972		128,990		2,237
							%		0,3		0,3		0,4		0,0		0,9		0,1		4,6		1,3		0,5
400S162-33	101,6	41,1	12,7	0,0346	0,88	1,94	SSMA	0,275	1,774	0,692	28,801	0,346	5,670	1,586	4,028	0,103	4,287	0,611	1,552	0,11	4,578	0,363	97,647	1,263	3,208
							CFSteel		1,774		28,768		5,663		4,027		4,236		1,545		4,672		96,592		3,193
							%		0,0		0,1		0,1		0,0		1,2		0,4		2,0		1,1		0,5
400S162-43	101,6	41,1	12,7	0,0451	1,15	1,81	SSMA	0,357	2,303	0,892	37,125	0,446	7,309	1,581	4,016	0,131	5,452	0,606	1,539	0,242	10,072	0,46	123,740	1,252	3,180
							CFSteel		2,306		37,160		7,315		4,014		5,421		1,533		10,372		122,687		3,163
10001.50 51	101.6		10.5	0.0555		0.1.6	%	0.440	0,1	1.000	0,1	0.540	0,1	1.574	0,0	0.150	0,6	0.5	0,4	0.470	3,0	0.54	0,9	1.000	0,5
400\$162-54	101,6	41,1	12,7	0,0566	1,44	2,16	SSMA	0,443	2,857	1,098	45,699	0,549	8,996	1,574	3,998	0,159	6,618	0,6	1,524	0,473	19,686	0,56	150,640	1,238	3,145
							CFSteel		2,858		45,635		8,983		3,996		6,578		1,517		20,249		148,974		3,128
40001/02/08	101 6	41.1	10.7	0.0712	1.01	2.72	%	0.55	0,0	1.246	0,1	0 (72	0,1	1504	0,0	0.102	0,0	0.501	0,5	0.022	20.021	0.67	1,1	1.00	2,000
4005162-68	101,6	41,1	12,7	0,0713	1,81	2,72	SSMA CESteel	0,55	3,548	1,340	55,021	0,673	10,002	1,504	3,973	0,192	7,991	0,591	1,501	0,933	38,831	0,67	180,230	1,22	3,099
							CrSteel		3,345		33,644		10,993		3,970		7,920		1,493		39,919		1/9,990		3,085
4008162.07	101.6	41.1	12.7	0.1017	2.59	2.97	% SSMA	0.762	0,1	1.912	75 415	0.006	0,5	1 5 4 2	2 017	0.240	10.262	0.572	1 452	2 628	2,0	0.80	220.410	1 19	2.007
4003102-97	101,0	41,1	12,7	0,1017	2,30	3,07	CESteel	0,702	4,913	1,012	75,413	0,900	14,047	1,342	3,917	0,249	10,303	0,572	1,455	2,028	113 8/0	0,09	237,410	1,10	2,371
							04		+,903		03		14,798		3,910		0.7		1,449		113,649		230,002		2,701
400\$200-33	101.6	50.8	15.8	0.0346	0.88	1.94	% SSMA	0.31	2 000	0.812	33 795	0.406	6 653	1 610	4 112	0.183	7.616	0.769	1.953	0.124	4,1 5 161	0.69	1,4	1.68	4 267
-1005200-33	101,0	50,0	15,0	0,0540	0,00	1,77	CESteel	0,51	1 999	0,012	33,827	3,400	6 659	1,019	4 113	0,105	7,618	3,709	1,953	5,124	5 254	0,07	186 551	1,00	4 282
							0%		0.0		0.1		0.1		0.0		0.0		0.1		1.8		0.5		03
							/0		5,0		5,1		5,1		3,0		5,0		5,1		1,0		5,5		0,0

Таблица 1.1.2 - С-образные профили. Сопоставление результатов, полученных в CFSteel, с данными, приведёнными в Техническом Руководстве SSMA [30]

Таблица 1.1.2 (продолжение)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
400S200-43	101,6	50,8	15,8	0,0451	1,15	1,81	SSMA	0,402	2,593	1,047	43,576	0,524	8,587	1,615	4,102	0,235	9,781	0,764	1,941	0,272	11,321	0,88	236,720	1,67	4,242
							CFSteel		2,600		43,741		8,610		4,101		9,789		1,940		11,670		237,855		4,251
							%		0,3		0,4		0,3		0,0		0,1		0,0		3,1		0,5		0,2
400S200-54	101,6	50,8	15,8	0,0566	1,44	2,16	SSMA	0,5	3,225	1,292	53,773	0,646	10,586	1,608	4,084	0,287	11,945	0,758	1,925	0,534	22,225	1,08	290,520	1,66	4,216
							CFSteel		3,277		53,835		10,598		4,084		11,951		1,924		22,797		290,019		4,215
							%		1,6		0,1		0,1		0,0		0,1		0,1		2,6		0,2		0,0
400S200-68	101,6	50,8	15,8	0,0713	1,81	2,72	SSMA	0,622	4,012	1,589	66,134	0,795	13,028	1,599	4,061	0,349	14,525	0,75	1,905	1,054	43,867	1,31	352,390	1,64	4,166
							CFSteel		4,006		66,087		13,009		4,062		14,512		1,903		44,979		352,303		4,169
							%		0,1		0,1		0,1		0,0		0,1		0,1		2,5		0,0		0,1
400S200-97	101,6	50,8	15,8	0,1017	2,58	3,87	SSMA	0,864	5,573	2,155	89,691	1,077	17,649	1,579	4,011	0,462	19,228	0,73	1,854	2,97	123,611	1,74	468,060	1,6	4,064
							CFSteel		5,563		89,584		17,635		4,013		19,209		1,858		128,504		467,388		4,072
							%		0,2		0,1		0,1		0,1		0,1		0,2		4,0		0,1		0,2
400S250-43	101,6	63,5	15,8	0,0451	1,15	1,81	SSMA	0,447	2,883	1,224	50,943	0,612	10,029	1,655	4,204	0,399	16,606	0,945	2,400	0,303	12,611	1,48	398,120	2,13	5,410
							CFSteel		2,892		51,109		10,061		4,204		16,631		2,398		12,958		399,001		5,426
							%		0,3		0,3		0,3		0,0		0,1		0,1		2,8		0,2		0,3
400S250-54	101,6	63,5	15,8	0,0566	1,44	2,16	SSMA	0,613	3,954	1,73	72,003	0,86	14,093	1,68	4,267	0,76	31,631	1,114	2,830	0,65	27,053	2,8	753,200	2,59	6,579
							CFSteel		3,958		72,183		14,209		4,270		31,645		2,827		27,853		750,825		6,581
							%		0,1		0,3		0,8		0,1		0,0		0,1		3,0		0,3		0,0
400S250-68	101,6	63,5	15,8	0,0713	1,81	2,72	SSMA	0,764	4,928	2,13	88,651	1,07	17,534	1,67	4,242	0,93	38,707	1,1	2,794	1,29	53,690	3,43	922,670	2,57	6,528
							CFSteel		4,926		88,980		17,516		4,250		38,755		2,805		55,020		917,965		6,533
							%		0,0		0,4		0,1		0,2		0,1		0,4		2,5		0,5		0,1
400S300-97	101,6	76,2	15,8	0,1017	2,58	3,87	SSMA	1,067	6,882	2,92	121,530	1,46	23,925	1,65	4,191	1,25	52,025	1,08	2,743	3,67	152,745	4,61	1240,090	2,53	6,426
							CFSteel		6,874		121,718		23,960		4,208		52,265		2,757		157,584		1234,632		6,432
							%		0,1		0,2		0,1		0,4		0,5		0,5		3,2		0,4		0,1
600S137-33	152,4	34,8	9,5	0,0346	0,88	1,94	SSMA	0,318	2,051	1,582	65,843	0,52	8,521	2,22	5,639	0,069	2,872	0,46	1,168	0,12	4,994	0,5	134,500	0,8	2,032
							CFSteel		2,054		65,791		8,634		5,660		2,829		1,174		5,395		133,087		2,038
							%		0,1		0,1		1,3		0,4		1,5		0,5		8,0		1,1		0,3
600S137-43	152,4	34,8	9,5	0,0451	1,15	1,81	SSMA	0,413	2,664	2,042	84,988	0,681	11,160	2,22	5,639	0,087	3,621	0,45	1,143	0,28	11,654	0,63	169,470	0,79	2,007
							CFSteel		2,672		85,111		11,169		5,644		3,604		1,161		11,984		168,875		2,012
							%		0,3		0,1		0,1		0,1		0,5		1,6		2,8		0,4		0,3
600S137-54	152,4	34,8	9,5	0,0566	1,44	2,16	SSMA	0,514	3,315	2,518	104,799	0,839	13,749	2,21	5,613	0,1	4,162	0,45	1,143	0,54	22,475	0,76	204,440	0,78	1,981
							CFSteel		3,316		104,710		13,741		5,619		4,341		1,144		23,414		204,827		1,981
							%		0,0		0,1		0,1		0,1		4,3		0,1		4,2		0,2		0,0
600S137-68	152,4	34,8	9,5	0,0713	1,81	2,72	SSMA	0,64	4,128	3,094	128,772	1,031	16,895	2,2	5,588	0,12	4,994	0,44	1,118	1,08	44,950	0,93	250,170	0,76	1,930
							CFSteel		4,118		128,433		16,855		5,584		5,173		1,121		46,205		247,099		1,940
							%		0,2		0,3		0,2		0,1		3,6		0,3		2,8		1,2		0,5
600S137-97	152,4	34,8	9,5	0,1017	2,58	3,87	SSMA	0,88	5,676	4,188	174,305	1,396	22,876	2,17	5,512	0,15	6,243	0,42	1,067	3,06	127,357	1,21	325,490	0,73	1,854
							CFSteel		5,723		173,752		22,802		5,510		6,565		1,071		132,053		322,903		1,855
							%		0,8		0,3		0,3		0,0		5,2		0,4		3,7		0,8		0,0

Таблица 1.1.2 (продолжение)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
600S137-118	152,4	34,8	9,5	0,1242	3,15	4,73	SSMA	1,06	6,837	4,913	204,479	1,638	26,842	2,14	5,436	0,17	7,075	0,4	1,016	5,47	227,661	1,39	373,910	0,7	1,778
							CFSteel		6,854		203,770		26,741		5,453		7,313		1,033		237,961		369,194		1,792
							%		0,2		0,3		0,4		0,3		3,4		1,7		4,5		1,3		0,8
600S162-33	152,4	41,1	12,7	0,0346	0,88	1,94	SSMA	0,344	2,219	1,793	74,625	0,598	9,799	2,28	5,791	0,11	4,578	0,58	1,473	0,13	5,411	0,86	231,340	1,07	2,718
							CFSteel		2,221		74,543		9,783		5,793		4,597		1,469		5,826		229,356		2,710
							%		0,1		0,1		0,2		0,0		0,4		0,3		7,7		0,9		0,3
600S162-43	152,4	41,1	12,7	0,0451	1,15	1,81	SSMA	0,447	2,883	2,316	96,392	0,772	12,651	2,27	5,766	0,14	5,827	0,57	1,448	0,3	12,486	1,09	293,210	1,06	2,692
							CFSteel		2,890		96,518		12,666		5,779		5,869		1,457		12,948		292,229		2,682
							%		0,2		0,1		0,1				0,7		0,6		3,7		0,3		0,4
600S162-54	152,4	41,1	12,7	0,0566	1,44	2,16	SSMA	0,556	3,586	2,86	119,033	0,953	15,617	2,26	5,740	0,18	7,492	0,57	1,448	0,59	24,556	1,33	357,770	1,04	2,642
							CFSteel		3,590		118,954		15,611		5,756		7,449		1,440		25,305		356,038		2,650
							%		0,1		0,1		0,0		0,3		0,6		0,5		3,1		0,5		0,3
600S162-68	152,4	41,1	12,7	0,0713	1,81	2,72	SSMA	0,693	4,470	3,525	146,711	1,175	19,255	2,25	5,715	0,21	8,740	0,56	1,422	1,17	48,695	1,62	435,780	1,03	2,616
							CFSteel		4,462		146,274		19,196		5,725		8,973		1,418		49,960		432,040		2,607
							%		0,2		0,3				0,2		2,7		0,3		2,6		0,9		0,4
600S162-97	152,4	41,1	12,7	0,1017	2,58	3,87	SSMA	0,966	6,231	4,797	199,651	1,599	26,203	2,22	5,639	0,28	11,654	0,54	1,372	3,32	138,178	2,15	578,350	0,99	2,515
							CFSteel		6,213		198,995		26,115		5,659		11,671		1,371		142,929		571,778		2,518
							%		0,3		0,3		0,3		0,4		0,1		0,0		3,4		1,1		0,1
600S162-118	152,4	41,1	12,7	0,1242	3,15	2,72	SSMA	1,158	7,469	5,652	235,236	1,884	30,873	2,2	5,588	0,32	13,318	0,52	1,321	5,95	247,639	2,48	667,120	0,97	2,464
							CFSteel		7,452		234,422		30,764		5,609		13,269		1,334		257,757		660,196		2,453
							%		0,2		0,3		0,4		0,4		0,4		1,0		4,1		1,0		0,4
600S200-33	152,4	50,8	15,8	0,0346	0,88	1,94	SSMA	0,379	2,445	2,075	86,362	0,692	11,340	2,34	5,944	0,2	8,324	0,74	1,880	0,15	6,243	1,59	427,710	1,45	3,683
							CFSteel		2,446		86,436		11,343		5,944		8,708		1,887		6,408		427,087		3,696
							%		0,1		0,1		0,0		0,0		4,6		0,4		2,6		0,1		0,4
600S200-43	152,4	50,8	15,8	0,0451	1,15	1,81	SSMA	0,482	3,109	2,683	111,666	0,894	14,650	2,33	5,918	0,26	10,821	0,73	1,854	0,33	13,735	2,03	546,070	1,44	3,658
							CFSteel		3,184		112,015		14,700		5,931		11,191		1,875		14,246		546,213		3,668
							%		2,4		0,3		0,3		0,2		3,4		1,1		3,7		0,0		0,3
600S200-54	152,4	50,8	15,8	0,0566	1,44	2,16	SSMA	0,613	3,954	3,319	138,137	1,106	18,124	2,32	5,893	0,32	13,318	0,73	1,854	0,65	27,053	2,49	669,810	1,43	3,632
							CFSteel		3,958		138,297		18,149		5,911		13,670		1,858		27,853		668,208		3,633
							%		0,1		0,1		0,1		0,3		2,6		0,2		3,0		0,2		0,0
600S200-68	152,4	50,8	15,8	0,0713	1,81	2,72	SSMA	0,764	4,928	4,101	170,684	1,367	22,401	2,31	5,867	0,4	16,648	0,72	1,829	1,29	53,690	3,04	817,760	1,41	3,581
							CFSteel		4,926		170,490		22,374		5,883		16,612		1,836		55,020		815,167		3,589
							%		0,0		0,1		0,1		0,3		0,2		0,4		2,5		0,3		0,2
600S200-97	152,4	50,8	15,8	0,1017	2,58	3,87	SSMA	1,06	6,837	5,612	233,571	1,871	30,660	2,29	5,817	0,53	22,059	0,7	1,778	3,67	152,745	4,08	1097,520	1,37	3,480
							CFSteel		6,874		233,224		30,607		5,825		22,029		1,790		157,584		1091,173		3,497
							%		0,5		0,1		0,2		0,1		0,1		0,7		3,2		0,6		0,5
600S200-118	152,4	50,8	15,8	0,1242	3,15	4,73	SSMA	1,283	8,275	6,641	276,398	2,214	36,281	2,27	5,766	0,61	25,388	0,69	1,753	6,59	274,276	4,75	1277,750	1,35	3,429
							CFSteel		8,259		275,955		36,215		5,781		25,440		1,755		284,428		1270,954		3,428
							%		0,2		0,2		0,2		0,3		0,2		0,1		3,7		0,5		0,0

Таблица 1.1.2 (окончание)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
600S250-43	152,4	63,5	15,8	0,0451	1,15	1,81	SSMA	0,537	3,464	3,082	128,273	1,027	16,829	2,39	6,071	0,45	18,729	0,92	2,337	0,36	14,983	3,41	917,290	1,87	4,750
							CFSteel		3,477		128,721		16,892		6,085		19,091		2,324		15,533		916,560		4,754
							%		0,4		0,3		0,4		0,2		1,9		0,5		3,7		0,1		0,1
600S250-54	152,4	63,5	15,8	0,0566	1,44	2,16	SSMA	0,67	4,322	3,819	158,947	1,273	20,861	2,38	6,045	0,56	23,307	0,91	2,311	0,71	29,550	4,19	1127,110	1,86	4,724
							CFSteel		4,324		159,136		20,884		6,066		23,409		2,327		30,381		1124,542		4,719
							%		0,1		0,1		0,1		0,3		0,4		0,7		2,8		0,2		0,1
600S250-68	152,4	63,5	15,8	0,0713	1,81	2,72	SSMA	0,836	5,392	4,727	196,738	1,576	25,826	2,37	6,020	0,68	28,302	0,9	2,286	1,41	58,684	5,14	1382,660	1,84	4,674
							CFSteel		5,385		196,555		25,795		6,041		28,594		2,304		60,041		1377,038		4,672
							%		0,1		0,1		0,1		0,4		1,0		0,8		2,3		0,4		0,0
600S250-97	152,4	63,5	15,8	0,1017	2,58	3,87	SSMA	1,169	7,540	6,496	270,364	2,165	35,478	2,35	5,969	0,92	38,290	0,88	2,235	4,03	167,729	6,94	1866,860	1,8	4,572
							CFSteel		7,529		270,001		35,433		5,988		38,346		2,257		172,124		1858,125		4,576
							%		0,1		0,1		0,1		0,3		0,1		1,0		2,6		0,5		0,1
600S250-118	152,4	63,5	15,8	0,1242	3,15	4,73	SSMA	1,407	9,075	7,713	321,015	2,571	42,131	2,34	5,944	1,07	44,533	0,87	2,210	7,23	300,913	8,14	2189,660	1,77	4,496
							CFSteel		9,059		320,518		42,063		5,948		44,677		2,221		310,892		2177,513		4,504
							%		0,2		0,2		0,2		0,1		0,3		0,5		3,3		0,6		0,2
600S300-54	152,4	76,2	15,8	0,0566	1,44	2,16	SSMA	0,726	4,683	4,319	179,757	1,44	23,597	2,43	6,172	0,87	36,209	1,09	2,769	0,77	32,047	6,45	1735,050	2,29	5,817
							CFSteel		4,690		179,975		23,619		6,195		36,439		2,787		32,910		1730,479		5,834
							%		0,2		0,1				0,4		0,6		0,7		2,7		0,3		0,3
600S300-68	152,4	76,2	15,8	0,0713	1,81	2,72	SSMA	0,907	5,850	5,354	222,833	1,785	29,251	2,43	6,172	1,07	44,533	1,08	2,743	1,53	63,679	7,93	2133,170	2,28	5,791
							CFSteel		5,845		222,621		29,215		6,171		44,671		2,764		65,061		2124,579		5,786
							%		0,1		0,1		0,1		0,0		0,3		0,8		2,2		0,4		0,1
600S300-97	152,4	76,2	15,8	0,1017	2,58	3,87	SSMA	1,271	8,198	7,381	307,197	2,46	40,312	2,41	6,121	1,45	60,349	1,07	2,718	4,38	182,296	10,77	2897,130	2,24	5,690
							CFSteel		8,184		306,778		40,260		6,122		60,379		2,716		186,665		2882,793		5,687
							%		0,2		0,1		0,1		0,0		0,0		0,1		2,4		0,5		0,0
600S300-118	152,4	76,2	15,8	0,1242	3,15	4,73	SSMA	1,531	9,875	8,785	365,632	2,928	47,981	2,39	6,071	1,704	70,920	1,05	2,667	7,87	327,549	12,68	3410,920	2,12	5,385
							CFSteel		9,859		365,082		47,911		6,085		70,783		2,679		337,355		3392,551		5,613
							%		0,2		0,2		0,1		0,2		0,2		0,4		3,0		0,5		4,2
600S350-54	152,4	88,9	25,4	0,0566	1,44	2,16	SSMA	0,825	5,321	5,022	209,016	1,674	27,432	2,46	6,248	1,491	62,055	1,34	3,404	0,88	36,626	12,94	3480,860	3,03	7,696
							CFSteel		5,332		209,382		27,478		6,266		62,155		3,414		37,349		3480,676		7,713
							%		0,2		0,2		0,2		0,3		0,2		0,3		2,0		0,0		0,2
600S350-68	152,4	88,9	25,4	0,0713	1,81	2,72	SSMA	1,032	6,656	6,237	259,584	2,079	34,069	2,45	6,223	1,841	76,622	1,33	3,378	1,74	72,419	15,96	4293,240	3,01	7,645
							CFSteel		6,652		259,456		34,049		6,245		76,598		3,393		72,877		4285,746		7,666
							%		0,1		0,0		0,1		0,4		0,0		0,4		0,6		0,2		0,3
600S350-97	152,4	88,9	25,4	0,1017	2,58	3,87	SSMA	1,449	9,346	8,631	359,222	2,877	47,145	2,44	6,198	2,51	104,466	1,31	3,327	4,99	207,684	21,81	5866,890	2,97	7,544
							CFSteel		9,335		358,907		47,101		6,201		104,722		3,349		212,196		5850,873		7,568
							%		0,1		0,1		0,1		0,1		0,2		0,6		2,2		0,3		0,3
600S350-118	152,4	88,9	25,4	0,1242	3,15	4,73	SSMA	1,748	11,275	10,304	428,852	3,435	56,289	2,42	6,147	2,97	123,611	1,3	3,302	8,99	374,164	25,79	6937,510	2,95	7,493
							CFSteel		11,264		428,388		56,219		6,167		123,874		3,316		383,822		6917,245		7,495
							%		0,1		0,1		0,1		0,3		0,2		0,4		2,6		0,3		0,0

В Таблицах 1.1.3 и 1.1.4 представлено сравнение геометрических характеристик С- и Сигма-образных сечений, полученных в CFSteel, с характеритсиками, приведёнными в каталоге компании Прушиньски [29]. Расчётная толщина $t = t_{nom} - t_{coat}$, $t_{coat} = 0,04$ мм для класса цинкования 275 c/m^2 .

	h	b.	c	t t	r		Rec		Геометр	ические	характери	стики полн	юго сече	ения	
Профиль	11, MM	U _f ,	<i>v</i> ,	unom,	1,	Источник	EE/M	А,	I _x ,	I _y ,	W _x ,	W _y ,	i _x ,	i _y ,	Z ₀ ,
	MM	MM	MM	MM	MM		KI/M	см ²	см4	cm ⁴	cm ³	cm ³	СМ	СМ	см
						Прушиньски	1,98	2,49	41,53	13,33	8,35	3,61	4,08	2,31	2,25
				1,0	1,5	CFSteel	2,04	2,43	40,74	13,33	8,15	3,6	4,1	2,35	2,3
						%	3,0	2,4	1,9	0,0	2,4	0,3	0,5	1,7	2,2
						Прушиньски	2,93	3,68	60,52	19,24	12,17	5,2	4,06	2,29	2,25
				1,5	2,25	CFSteel	2,99	3,63	60,2	19,52	12,05	5,27	4,07	2,32	2,3
					-	%	2.0	1.4	0.5	1.5	1.0	1.3	0.2	1.3	2.2
						Прушиньски	3.85	4.83	78.36	24.66	15.75	6.65	4.03	2.26	2.25
C 100	100	60	20	2.0	3.0	CESteel	3.91	4.81	78.5	25.19	15 71	6.8	4 04	2 29	2 29
0 100	100	00	20	2,0	5,0	0%	16	0.4	0.2	23,17	03	23	0.2	13	1.8
						Прушиньски	4 74	5.95	95.07	29.6	19.11	7 97	4	2 23	2 25
				25	3 75	CESteel	4,74	5.94	95,67	20,38	10.13	8 18	4.01	2,25	2,25
				2,5	3,15	0/	4,79	3,94	95,05	26	19,13	0,10	4,01	2,20	1.0
						70 Пружини оку	5.6	7.02	110.66	2,0	22.24	0.17	2.07	1,5	2.25
				2.0	15	СЕбтор1	5,0	7,05	110,00	25.00	22,24	9,17	3,97	2,2	2,23
				3,0	4,5	CrSteel	3,05	7,04	111,05	33,09	22,54	9,44	3,98	2,25	2,20
						70	0,9	2.00	105.62	3,0	0,4	2,9	0,5	1,4	1,5
				1.0	1.5	Прушиньски	2,38	2,99	105,05	15,35	14,15	3,78	5,94	2,27	1,88
				1,0	1,5	CFSteel	2,45	2,91	103,31	15,36	13,/8	3,77	5,96	2,3	1,93
						%	2,9	2,7	2,2	0,1	2,5	0,3	0,3	1,3	2,7
				1.5	0.05	Прушиньски	3,52	4,43	154,73	22,18	20,7	5,45	5,91	2,24	1,88
				1,5	2,25	CFSteel	3,59	4,36	153,47	22,51	20,47	5,53	5,93	2,27	1,92
						%	2,0	1,6	0,8	1,5	1,1	1,5	0,3	1,3	2,1
						Прушиньски	4,63	5,83	201,41	28,47	26,94	6,99	5,88	2,21	1,88
C 150	150	60	20	2,0	3,0	CFSteel	4,7	5,79	201,17	29,1	26,83	7,14	5,89	2,24	1,92
						%	1,5	0,7	0,1	2,2	0,4	2,1	0,2	1,4	2,1
						Прушиньски	5,72	7,2	245,68	34,22	32,87	8,39	5,84	2,18	1,88
				2,5	3,75	CFSteel	5,79	7,17	246,43	35,14	32,87	8,61	5,86	2,21	1,92
						%	1,2	0,4	0,3	2,7	0,0	2,6	0,3	1,4	2,1
						Прушиньски	6,78	8,53	287,58	39,45	38,47	9,66	5,81	2,15	1,88
				3,0	4,5	CFSteel	6,84	8,52	289,28	40,65	38,58	9,94	5,83	2,19	1,91
						%	0,9	0,1	0,6	3,0	0,3	2,9	0,3	1,9	1,6
						Прушиньски	4,11	5,17	302,52	24,26	30,4	5,6	7,65	2,17	1,62
				1,5	2,25	CFSteel	4,19	5,09	301,27	24,65	30,13	5,68	7,69	2,2	1,66
						%	1,9	1,5	0,4	1,6	0,9	1,4	0,5	1,4	2,5
						Прушиньски	5,42	6,82	395	31,14	39,7	7,19	7,61	2,14	1,62
				2,0	3,0	CFSteel	5,5	6,76	396,15	31,88	39,62	7,34	7,65	2,17	1,66
C 200	200	60	20			%	1,5	0,9	0,3	2,4	0,2	2,1	0,5	1,4	2,5
C 200	200	00	20			Прушиньски	6,72	8,44	483,36	37,44	48,58	8,64	7,57	2,11	1,62
				2,5	3,75	CFSteel	6,78	8,4	486,84	38,51	48,69	8,86	7,61	2,14	1,65
						%	0,9	0,5	0,7	2,9	0,2	2,5	0,5	1,4	1,9
						Прушиньски	7,95	10,01	567,65	43,19	57,05	9,96	7,53	2,08	1,62
				3,0	4,5	CFSteel	8,03	10	573,38	44,57	57,35	10,25	7,57	2,11	1,65
						%	1,0	0,1	1,0	3,2	0,5	2,9	0,5	1,4	1,9
						Прушиньски	6,2	7,82	675,45	33,15	54,25	7,32	9,29	2,06	1,42
				2,0	3,0	CFSteel	6,3	7,75	675,68	33,95	54,06	7,48	9,34	2,09	1,46
						%	1.6	0.9	0.0	2.4	0.4	2.2	0.5	1.5	2.8
						Прушиньски	7,68	9,69	828,41	39,87	66,54	8,81	9,25	2,03	1,42
C 250	250	60	20	2.5	3.75	CFSteel	7.77	9.63	832.23	41.02	66.59	9.04	9.3	2.06	1.46
			_	,-	,	%	1.2	0.6	0.5	2.9	0.1	2.6	0.5	1.5	2.8
						Прушиньски	9.13	11.51	975.12	45.99	78.32	10.16	9.2	2	1.42
				3.0	4.5	CESteel	9.22	11,48	982.43	47.48	78.61	10,45	9.25	2.03	1.46
				2,0	.,e	%	1.0	03	0.7	3.2	04	2.0	0.5	15	2.8
C 300	300	60	20	2.0	3.0	Прушиньски	6,99	8,81	1049.37	34.69	70.31	7,42	10.91	1,98	1,28
				,	- ,~			- ,		- ,	,	. , . =		,	,

Таблица 1.1.3 - С-образные профили. Сопоставление результатов, полученных в CFSteel, с данными, приведёнными в каталоге компании Прушиньски [29]

				CFSteel	7,09	8,73	1052,03	35,56	70,14	7,58	10,98	2,02	1,31
				%	1,4	0,9	0,3	2,5	0,2	2,2	0,6	2,0	2,3
				Прушиньски	8,66	10,92	1289,22	41,72	86,38	8,93	10,86	1,95	1,28
		2,5	3,75	CFSteel	8,77	10,86	1297,98	42,97	86,54	9,16	10,93	1,99	1,31
				%	1,3	0,5	0,7	3,0	0,2	2,6	0,6	2,1	2,3
				Прушиньски	10,3	13	1520,19	48,13	101,85	10,3	10,82	1,92	1,28
		3,0	4,5	CFSteel	10,4	12,96	1534,92	49,73	102,34	10,6	10,89	1,96	1,31
				%	1,0	0,3	1,0	3,3	0,5	2,9	0,6	2,1	2,3

Таблица 1.1.4 - Сигма-образные профили. Сопоставление результатов, полученных в CFSteel,	с
данными, приведёнными в каталоге компании Прушиньски [29]	

Пасфия	4 104	Источник		Х	арактерис	гики полно	го сечения	I	
профиль	ι _{nom} , мм	источник	A, cm^2	I_x, cm^4	W_x , cm^3	i _x , см	I_y, cm^4	W_y , cm^3	i _y , см
		Прушиньски	6,29	181,09	26,06	5,37	31,88	12,23	2,25
	2,0	CFSteel	6,2	185,11	26,45	5,47	31,43	12,19	2,25
		%	1,4	2,2	1,5	1,9	1,4	0,3	0,0
		Прушиньски	7,81	223	32,09	5,34	38,8	14,85	2,23
	2,5	CFSteel	7,72	228,41	32,64	5,44	38,29	14,83	2,23
$\Sigma 140$		%	1,2	2,4	1,7	1,9	1,3	0,1	0,0
2 140		Прушиньски	9,31	263,6	37,93	5,32	45,31	17,3	2,21
	3,0	CFSteel	9,21	270,15	38,6	5,42	44,7	17,28	2,2
		%	1,1	2,5	1,8	1,9	1,3	0,1	0,5
		Прушиньски	9,9	279,48	40,21	5,31	47,81	18,23	2,2
	3,2	CFSteel	9,8	286,42	40,93	5,41	47,14	18,22	2,19
		%	1,0	2,5	1,8	1,9	1,4	0,1	0,5
		Прушиньски	6,89	288,47	34,14	6,47	32,13	12,33	2,16
	2,0	CFSteel	6,79	292,58	34,43	6,57	31,43	12,18	2,15
		%	1,5	1,4	0,8	1,5	2,2	1,2	0,5
		Прушиньски	8,56	355,89	42,12	6,45	39,11	14,96	2,14
	2,5	CFSteel	8,45	361,67	42,56	6,54	38,29	14,81	2,13
N 170		%	1,3	1,6	1,0	1,4	2,1	1,0	0,5
2170		Прушиньски	10,21	421,47	49,88	6,42	45,69	17,42	2,11
	3,0	CFSteel	10,1	428,56	50,43	6,51	44,71	17,25	2,1
		%	1,1	1,7	1,1	1,4	2,1	1,0	0,5
		Прушиньски	10,87	447,2	52,92	6,41	48,21	18,36	2,11
	3,2	CFSteel	10,75	454,7	53,51	6,5	47,16	18,18	2,09
		%	1,1	1,7	1,1	1,4	2,2	1,0	0,9
		Прушиньски	7,49	426,98	42,91	7,55	32,33	12,41	2,08
	2,0	CFSteel	7,37	430,58	43,07	7,64	31,44	12,17	2,07
		%	1,6	0,8	0,4	1,2	2,8	1,9	0,5
		Прушиньски	9,32	527,46	53,01	7,52	39,35	15,05	2,06
	2,5	CFSteel	9,19	532,98	53,31	7,61	38,3	14,79	2,04
N 200		%	1,4	1,0	0,6	1,2	2,7	1,7	1,0
2 200		Прушиньски	11,12	625,49	62,86	7,5	45,98	17,52	2,03
	3,0	CFSteel	10,99	632,41	63,25	7,59	44,72	17,22	2,02
		%	1,2	1,1	0,6	1,2	2,7	1,7	0,5
		Прушиньски	11,83	664,02	66,74	7,49	48,52	18,46	2,02
	3,2	CFSteel	11,7	671,36	67,15	7,58	47,17	18,15	2,01
		%	1,1	1,1	0,6	1,2	2,8	1,7	0,5
		Прушиньски	8,06	592,03	51,93	8,57	32,14	12,36	2
V 220	2,0	CFSteel	7,96	601,76	52,34	8,69	31,44	12,17	1,99
2 230		%	1,2	1,6	0,8	1,4	2,2	1,5	0,5
	2,5	Прушиньски	10,03	732,06	64,22	8,54	39,12	14,98	1,97

Сечение

$\Sigma 260 = CFSteel 9,93 745,65 64,85 8,67 38,3 14,78 1,96 % 1,0 1,9 1,0 1,5 2,1 1,3 0,5 Teyminiscan 11,98 868,94 76,22 8,52 45,71 17,43 1,95 CFSteel 11,88 885,7 77,03 8,64 44,73 17,2 1,94 % 0,8 1,9 1,1 1,4 2,1 1,3 0,5 Teyminiscan 1,75 922,82 80,95 8,51 48,23 18,36 1,95 3,2 CFSteel 12,65 940,65 81,81 8,63 47,18 18,12 1,93 % 0,8 1,9 1,1 1,4 2,2 1,3 1,0 % 0,8 1,9 1,1 1,4 2,2 1,3 1,0 % 0,8 1,9 1,1 1,4 2,2 1,3 1,0 % 0,8 7 99,61 61,99 9,61 32,28 12,41 1,93 CFSteel 8,55 808,76 62,22 9,73 31,44 12,17 1,92 % 1,4 1,1 0,4 1,2 2,6 1,9 0,5 CFSteel 10,67 1003 77,17 9,58 39,3 15,04 1,91 CFSteel 10,67 1003 77,17 9,7 38,31 14,77 1,9 % 1,0 1,4 0,6 1,3 2,5 1,8 0,5 CFSteel 10,76 1192,43 9,1,74 9,67 44,74 17,18 1,87 % 0,9 1,4 0,7 1,3 2,5 1,8 1,7 1,9 % 0,9 1,4 0,7 1,3 2,5 1,8 1,7 1,9 % 0,9 1,4 0,7 1,3 2,5 1,8 1,7 1,9 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 1,89 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 1,89 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 1,89 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 1,89 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 0,9 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 0,9 0,4 1,4 0,7 1,2 2,6 1,8 1,1 1,80 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 1,1 1,83 1,1 4,76 1,81 % 1,1 0,8 105,78 112,47 110,5 3,81 14,76 1,81 % 1,1 0,8 105,78 112,47 110,5 3,81 14,76 1,81 % 1,1 0,8 105,78 112,47 10,9 48,7 18,51 1,8 % 1,1 0,8 105,78 112,47 10,9 48,7 18,51 1,8 % 1,1 0,8 105,78 112,47 10,9 48,7 18,51 1,8 % 1,2 0,4 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 1,0 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 1,0 0,9 0,9 0,3 0,9 3,0 2,3 1,1 $										
% 1.0 1.9 1.0 1.5 2.1 1.3 0.5 3.0 Ippummscon 11.98 868.94 76.22 8.52 45.71 17.43 1.95 3.0 IPpummscon 11.98 885.7 77.03 8.64 44.73 17.2 1.94 % 0.8 1.9 1.1 1.4 2.1 1.3 0.5 119 12.65 940.65 81.81 86.3 47.18 18.12 1.93 % 0.8 1.9 1.1 1.4 2.2 1.3 1.0 % 0.8 1.9 1.1 0.4 2.2 1.3 1.0 % 1.4 1.1 0.4 1.2 2.6 1.9 0.5 1.9 1.4 1.1 0.4 1.2 2.6 1.9 0.5 1.9 1.4 0.7 1.2 2.6 1.8 1.7 1.0 1.4			CFSteel	9,93	745,65	64,85	8,67	38,3	14,78	1,96
Σ 260 Πрушиньски (FSteel 11,98 886,94 76,22 8,52 45,71 17,43 1.95 CFSteel 11,88 885,7 77,03 8,64 44,73 1,72 1,94 % 0,8 1,9 1,1 1,4 2,1 1,2 1,3 0,5 3,2 CFSteel 12,65 940,65 81,81 8,63 47,18 18,12 1,33 % 0,8 1,9 1,1 1,4 2,2 1,3 1,0 % 1,4 1,1 0,4 1,2 2,6 1,9 0,5 % 1,0 1,4 1,1 0,4 1,2 2,6 1,9 0,5 % 1,0 1,4 0,6 1,3 2,5 1,8 0,5 % 0,0 1,4 0,67 1,3 2,5 1,8 1,7 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 1,8 1,8 <td></td> <td></td> <td>%</td> <td>1,0</td> <td>1,9</td> <td>1,0</td> <td>1,5</td> <td>2,1</td> <td>1,3</td> <td>0,5</td>			%	1,0	1,9	1,0	1,5	2,1	1,3	0,5
3.0 CFSkeel 11.88 885.7 77.03 8.64 44.73 17.2 1.94 % 0.8 1.9 1.1 1.4 2.1 1.3 0.5 3.2 CFSteel 12.65 940.65 81.81 86.33 47.18 18.36 1.95 3.1 CFSteel 12.65 940.65 81.81 86.33 47.18 18.12 1.93 % 0.8 1.9 1.1 1.4 2.2 1.3 1.0 % 0.4 1.1 0.4 1.2 2.6 1.9 0.5 Прушински 8.55 808.76 62.22 9.73 31.44 12.17 1.92 2.5 CFSteel 10.67 1003 77.17 9.75 38.31 14.77 1.9 3.0 I.2 FSteel 12.76 1192.43 91.74 9.67 44.74 17.18 1.8 3.0 CFSteel 12.68 117.4 9.7 1.3 <td></td> <td></td> <td>Прушиньски</td> <td>11,98</td> <td>868,94</td> <td>76,22</td> <td>8,52</td> <td>45,71</td> <td>17,43</td> <td>1,95</td>			Прушиньски	11,98	868,94	76,22	8,52	45,71	17,43	1,95
δ 0.8 1.9 1.1 1.4 2.1 1.3 0.5 3.2 Прушиньски 12,75 922,82 80,95 8,51 48,23 18,36 1.95 3.2 CFSteel 12,65 940,65 81,81 8,63 47,18 18,12 1.9 % 0.8 1.9 1.1 1.4 2.2 1.3 1.0 % 0.8 1.9 1.1 0.4 1.2 2.13 1.0 % 1.4 1.1 0.4 1.2 2.6 1.9 0.5 % 1.0 1.4 1.0 4 1.2 2.6 1.9 0.5 % 0.9 1.4 0.6 1.3 2.5 1.8 0.5 % 0.9 1.4 0.7 1.3 2.5 1.8 1.7 % 0.9 1.4 0.7 1.2 2.6 1.8 1.7 % 0.9 1.4 0.7		3,0	CFSteel	11,88	885,7	77,03	8,64	44,73	17,2	1,94
Σ260 Πрушиньски (F) 12,75 922,82 80,95 8,51 48,23 18,36 1,93 % CFSteel 12,65 940,65 81,81 8,63 47,18 18,12 1,93 % 0.8 1,9 1,1 1,4 2.2 1,3 1,0 % 0.8 1,9 1,1 1,4 2.2 1,3 1,0 % 0.8 1,4 1,1 0.4 1,2 2,6 1,9 0,51 % 0.7 94,05 76,71 9,58 39,3 15,04 1,91 2,5 CFSteel 10,67 1003 77,17 9,7 38,31 14,77 1,9 3,0 CFSteel 12,76 1192,43 91,74 9,67 44,74 17,18 1.89 3,0 CFSteel 12,76 1192,43 91,74 9,67 44,74 17,18 1.89 3,2 CFSteel 13,59 126,85 97,47 9,65 47,18 18,18 1.8			%	0,8	1,9	1,1	1,4	2,1	1,3	0,5
$\Sigma 300 = \begin{cases} 3,2 \\ CFSteel \\ 12,65 \\ 0,8 \\ 0,8 \\ 1,9 \\ 1,1 \\ 1,1 \\ 1,4 \\ 2,2 \\ 1,3 \\ 1,4 \\ 1,1 \\ 1,4 \\ 2,2 \\ 1,3 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,2 \\ 1,3 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,2 \\ 1,3 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,2 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,4 \\ 1,1 \\ 1,4 \\ 1,4 \\ 1,1 \\ 1,4 \\ $			Прушиньски	12,75	922,82	80,95	8,51	48,23	18,36	1,95
Σ 300 (1)/2 (1,1)/2 (1,2)/2 (1,3)/2 (1,3)/2 Σ 260 IIpymmmcka 8,67 799,61 61,99 9,61 32,28 12,41 1,93 Σ 260 CFSteel 8,55 808,76 62,22 9,73 31,44 12,17 1,92 Δ/2 1,4 1,1 0,4 1,2 2,6 1,9 0,5 S 260 IIpymmucka 10,78 989,52 76,71 9,58 39,3 15,04 1,91 2,5 IIsymmucka 12,88 1175,49 91,12 9,55 45,91 17,5 1,89 3,0 CFSteel 12,76 1192,43 91,74 9,67 44,74 17,18 1,88 3,2 CFSteel 13,59 126,685 97,47 9,65 47,18 1,81 1,86 3,2 CFSteel 9,33 1145,06 76,35 110,96 32,44 12,47 1,85 2,0 CFSteel 13,59 166,65,8 <td></td> <td>3,2</td> <td>CFSteel</td> <td>12,65</td> <td>940,65</td> <td>81,81</td> <td>8,63</td> <td>47,18</td> <td>18,12</td> <td>1,93</td>		3,2	CFSteel	12,65	940,65	81,81	8,63	47,18	18,12	1,93
$\Sigma 300 = \begin{cases} 1 \text{ Hymmuckas} & 8,67 & 799,61 & 61,99 & 9,61 & 32,28 & 12,41 & 1,93 \\ \hline \text{CFSteel} & 8,55 & 808,76 & 62,22 & 9,73 & 31,44 & 12,17 & 1,92 \\ \% & 1.4 & 1.1 & 0.4 & 1.2 & 2.6 & 1,9 & 0.5 \\ \hline \text{Hymmuckas} & 10,78 & 989,52 & 76,71 & 9,58 & 39,3 & 15,04 & 1,91 \\ 2,5 & \hline \text{CFSteel} & 10,67 & 1003 & 77,17 & 9,7 & 38,31 & 14,77 & 1,9 \\ \hline & 1.0 & 1.4 & 0.6 & 1.3 & 2.5 & 1.8 & 0.5 \\ \hline \text{Hymmuckas} & 12,88 & 1175,49 & 91,12 & 9,55 & 45,91 & 17,5 & 1,89 \\ \hline & \text{CFSteel} & 12,76 & 1192,43 & 91,74 & 9,67 & 44,74 & 17,18 & 1,87 \\ \hline & 0.9 & 1.4 & 0.7 & 1.3 & 2.5 & 1.8 & 1.1 \\ \hline & 10 \text{Hymmuckas} & 13,71 & 1248,79 & 96,81 & 9,54 & 48,45 & 18,43 & 1,88 \\ \hline & \text{CFSteel} & 13,59 & 1266,85 & 97,47 & 9,65 & 47,18 & 18,1 & 1,86 \\ \% & 0.9 & 1.4 & 0.7 & 1.2 & 2.6 & 1,8 & 1.1 \\ \hline & 10 \text{Hymmuckas} & 9,47 & 1137,96 & 76,33 & 10.96 & 32,44 & 12,47 & 1,85 \\ \hline & \text{CFSteel} & 0,33 & 1145,06 & 76,33 & 10.96 & 32,44 & 12,47 & 1,85 \\ \hline & \text{CFSteel} & 9,33 & 1145,06 & 76,33 & 10.96 & 32,44 & 12,47 & 1,85 \\ \hline & \text{CFSteel} & 11,65 & 1421,4 & 94,77 & 11.05 & 38,31 & 14.76 & 1,81 \\ \hline & & 1.5 & 0.6 & 0.0 & 1.1 & 3.1 & 2.5 & 0.5 \\ \hline & \text{Hpymmuckas} & 11,78 & 1409,44 & 94,59 & 10.94 & 39,5 & 15,11 & 1,83 \\ \hline & \text{CFSteel} & 13,59 & 1691,43 & 112,77 & 10.91 & 46,15 & 17,75 & 1,81 \\ \hline & \text{CFSteel} & 13,95 & 1691,43 & 112,78 & 11,01 & 44,75 & 17,16 & 1,78 \\ \hline & & 0.9 & 0.9 & 0.3 & 0.9 & 3.0 & 2.3 & 1.1 \\ \hline & \text{Hymmuckas} & 14,09 & 1780,88 & 119,52 & 10.9 & 48,7 & 18,51 & 1,8 \\ \hline & \text{CFSteel} & 13,95 & 1691,43 & 112,73 & 11,01 & 44,75 & 1,76 \\ \hline & & 0.9 & 0.9 & 0.3 & 0.9 & 3.0 & 2.3 & 1.7 \\ \hline & \text{Hymmuckas} & 13,04 & 2068,84 & 118,9 & 12,6 & 39,7 & 15,18 & 1,75 \\ \hline & & 0.6 & 0.7 & 0.4 & 0.8 & 3.5 & 2.8 & 1.7 \\ \hline & \text{Hymmuckas} & 13,04 & 2068,84 & 118,9 & 12,6 & 39,7 & 15,18 & 1,75 \\ \hline & & 0.6 & 0.7 & 0.7 & 0.7 & 3.5 & 2.9 & 1.7 \\ \hline & \text{Hymmuckas} & 13,04 & 2068,84 & 118,9 & 12,65 & 47,23 & 18,05 & 1.7 \\ \hline & & 0.6 & 1.0 & 0.5 & 0.1 & 0.7 & 3.5 & 2.9 & 1.7 \\ \hline & & \text{Hymmuckas} & 15,48 & 2461,86 & 141,49 & 12,55 & 48,95 & 18,58 & 1,72 \\ \hline & & CFS$			%	0,8	1,9	1,1	1,4	2,2	1,3	1,0
$\Sigma 300 = \begin{cases} 2.0 & CFSteel 8.55 808.76 62.22 9.73 31.44 12.17 1.92 \\ \% 1.4 1.1 0.4 1.2 2.6 1.9 0.5 \\ 1.9 0.5 808.76 989.52 76.71 9.58 39.3 15.04 1.91 \\ CFSteel 10.78 989.52 76.71 9.58 39.3 15.04 1.91 \\ CFSteel 10.67 1003 77.17 9.7 38.31 14.77 1.9 \\ \% 1.0 1.4 0.6 1.3 2.5 1.8 0.5 \\ 1.9 0.9 1.4 0.6 1.3 2.5 1.8 1.57 1.8 \\ 0.9 0.9 1.4 0.6 1.3 2.5 1.8 1.5 \\ 0.9 0.9 1.4 0.7 1.3 2.5 1.8 1.5 \\ \% 0.9 0.1 4. 0.7 1.3 2.5 1.8 1.5 \\ 1.0 1.2 0.7 1.4 9.67 44.74 17.18 1.87 \\ \% 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.9 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 2.6 1.8 1.1 \\ 1.8 0.9 0.9 1.4 0.7 1.2 0.6 0.0 1.1 3.1 2.5 0.5 \\ 0.1 0.9 0.9 1.4 0.7 0.5 11.08 31.44 12.16 1.84 \\ \% 0.9 0.4 0.9 1.9 0.9 10.94 39.5 15.11 1.83 \\ 2.5 CFSteel 11.65 1421.4 94.77 11.05 38.31 14.76 1.81 \\ 1.8 0.9 1.1 0.8 0.2 1.0 3.0 2.3 1.1 \\ 1.8 0.9 0.1 1.0 0.8 0.2 1.0 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.1 0.8 8119.52 10.9 48.7 18.51 1.8 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.3 0.9 3.0 2.3 1.1 \\ 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\ 0.9 0.9 0.9 0.9 0.3 0.9 3.1 2.4 1.1 \\$			Прушиньски	8,67	799,61	61,99	9,61	32,28	12,41	1,93
$\Sigma 260 \\ Solution \\ \Sigma 260 \\ \Sigma 260 \\ Solution \\ \Sigma 260 \\ Solution \\$		2,0	CFSteel	8,55	808,76	62,22	9,73	31,44	12,17	1,92
$\Sigma 260 \\ \Sigma 260 \\ \Sigma 260 \\ 10,5 \\ \Sigma 260 \\ \Sigma 260 \\ 10,5 \\ 100 \\ 100 \\ 1,0 \\ 1,0 \\ 1,0 \\ 1,0 \\ 1,4 \\ 0,6 \\ 1,3 \\ 1,5 $			%	1,4	1,1	0,4	1,2	2,6	1,9	0,5
$\Sigma 260 = \frac{2,5}{2} = \frac{CFSteel}{0,67} = \frac{10,67}{0,0} = \frac{1003}{1,4} = \frac{7,17}{0,6} = \frac{9,7}{3,8,31} = \frac{14,77}{1,8} = \frac{19,9}{0,9} = \frac{11,2,6}{1,9} = \frac{17,5}{1,10} = \frac{17,5}{1,8} = \frac{11,2}{1,8} = \frac{11,2,6}{1,10} = \frac{11,2,43}{1,11} = \frac{9,55}{1,10} = \frac{45,91}{1,13} = \frac{17,5}{1,18} = \frac{11,11}{1,18} = \frac{11,11}{1,19} = \frac{11,11}{1,$			Прушиньски	10,78	989,52	76,71	9,58	39,3	15,04	1,91
$\Sigma 260 = \left(\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,5	CFSteel	10,67	1003	77,17	9,7	38,31	14,77	1,9
Σ 200 Πрушински 12,88 1175,49 91,12 9,55 45,91 17,5 1,89 3,0 CFSteel 12,76 1192,43 91,74 9,67 44,74 17,18 1,87 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 % 0,9 1,4 0,7 1,3 2,5 1,8 1,1 % 0,9 1,4 0,7 1,2 2,5 1,8 1,8 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 % 1,5 0,6 0,0 1,1 3,1 12,47 1,83 2,0 CFSteel 11,65 142,4 94,59 10,94 39,5 15,11 1,83 2,5 CFSteel <td< td=""><td>Σ 260</td><td></td><td>%</td><td>1,0</td><td>1,4</td><td>0,6</td><td>1,3</td><td>2,5</td><td>1,8</td><td>0,5</td></td<>	Σ 260		%	1,0	1,4	0,6	1,3	2,5	1,8	0,5
$\Sigma 300 = \begin{cases} 3,0 & CFSteel 12,76 & 1192,43 & 91,74 & 9,67 & 44,74 & 17,18 & 1,87 \\ \hline \% & 0,9 & 1,4 & 0,7 & 1,3 & 2,5 & 1,8 & 1,1 \\ \hline \mbox{Mpummercki} 13,71 & 1248,79 & 96,81 & 9,54 & 48,45 & 18,43 & 1,88 \\ \hline \mbox{CFSteel} 13,59 & 1266,85 & 97,47 & 9,65 & 47,18 & 18,1 & 1,86 \\ \hline \% & 0,9 & 1,4 & 0,7 & 1,2 & 2,6 & 1,8 & 1,1 \\ \hline \mbox{Mpummercki} 9,47 & 1137,96 & 76,37 & 10,96 & 32,44 & 12,47 & 1,85 \\ \hline \mbox{CFSteel} 9,33 & 1145,06 & 76,35 & 11,08 & 31,44 & 12,16 & 1,84 \\ \hline \mbox{Mpummercki} 9,47 & 1137,96 & 76,35 & 11,08 & 31,44 & 12,16 & 1,84 \\ \hline \mbox{Mpummercki} 11,78 & 1409,44 & 94,59 & 10,94 & 39,5 & 15,11 & 1,83 \\ \hline \mbox{CFSteel} 11,65 & 1421,4 & 94,77 & 11,05 & 38,31 & 14,76 & 1,81 \\ \hline \mbox{Mpummercki} 14,08 & 1675,78 & 112,47 & 10,91 & 46,15 & 17,57 & 1,81 \\ \hline \mbox{CFSteel} 13,95 & 1691,43 & 112,78 & 11,01 & 44,75 & 17,16 & 1,79 \\ \hline \mbox{Mpummercki} 14,99 & 1780,88 & 119,52 & 10,9 & 48,7 & 18,51 & 1,8 \\ \hline \mbox{CFSteel} 14,86 & 1797,68 & 119,86 & 11 & 47,2 & 18,07 & 1,78 \\ \hline \mbox{Mpummercki} 13,04 & 2068,84 & 118,9 & 12,6 & 39,7 & 15,18 & 1,75 \\ \hline \mbox{Mpummercki} 13,04 & 2068,84 & 118,9 & 12,6 & 39,7 & 15,18 & 1,75 \\ \hline \mbox{CFSteel} 10,31 & 1671,17 & 95,51 & 12,73 & 31,45 & 12,16 & 1,75 \\ \hline \mbox{Mpummercki} 13,04 & 2068,84 & 118,9 & 12,6 & 39,7 & 15,18 & 1,75 \\ \hline \mbox{CFSteel} 12,88 & 2076,41 & 118,67 & 12,7 & 38,32 & 14,75 & 1,73 \\ \hline \mbox{Mpummercki} 15,58 & 2461,86 & 141,49 & 12,57 & 46,39 & 17,65 & 1,73 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 44,76 & 17,14 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18,05 & 1,7 \\ \hline \mbox{Mpummercki} 16,6 & 2517,16 & 150,41 & 12,56 & 47,23 & 18$	2 200		Прушиньски	12,88	1175,49	91,12	9,55	45,91	17,5	1,89
$\Sigma 300 = \frac{\%}{0.9} \frac{0.9}{1.4} \frac{0.7}{0.7} \frac{1.3}{1.3} \frac{2.5}{2.5} \frac{1.8}{1.8} \frac{1.1}{1.8}$ $10900000000000000000000000000000000000$		3,0	CFSteel	12,76	1192,43	91,74	9,67	44,74	17,18	1,87
Σ 3.2 Πрушиньски 13,71 1248,79 96,81 9,54 48,45 18,43 1,88 CFSteel 13,59 1266,85 97,47 9,65 47,18 18,1 1,86 % 0,9 1,4 0,7 1,2 2,6 1,8 1,1 Прушиньски 9,47 1137,96 76,37 10,96 32,44 12,47 1,85 CFSteel 9,33 1145,06 76,35 11,08 31,44 12,16 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 Прушиньски 11,78 1409,44 94,59 10,94 39,5 15,11 1,83 2,5 CFSteel 11,65 1421,4 94,77 11,05 38,31 14,76 1,81 3,0 CFSteel 13,95 1691,43 112,47 10,91 46,15 17,57 1,81 3,0 CFSteel 13,95 1691,43 112,47 10,91 4			%	0,9	1,4	0,7	1,3	2,5	1,8	1,1
$\Sigma 300 = \frac{3,2}{5} = \frac{\text{CFSteel}}{3,2} = \frac{13,59}{6} = \frac{1266,85}{97,47} = 9,65} = \frac{47,18}{9,18} = 18,1 = 1,86}{9,67} = \frac{14,10}{1,2} = 2,6 = 1,8 = 1,1}{1,12} = 1,12 = 2,6 = 1,8 = 1,17 = 1,12 = 2,6 = 1,8 = 1,17 = 1,12 = 1,1$			Прушиньски	13,71	1248,79	96,81	9,54	48,45	18,43	1,88
$\Sigma 300 = \begin{cases} $		3,2	CFSteel	13,59	1266,85	97,47	9,65	47,18	18,1	1,86
Σ 300 Πрушиньски СFSteel 9,47 1137,96 76,37 10,96 32,44 12,47 1,85 Σ 300 CFSteel 9,33 1145,06 76,35 11,08 31,44 12,16 1,84 % 1,5 0,6 0,0 1,1 3,1 2,5 0,5 Прушиньски 11,78 1409,44 94,59 10,94 39,5 15,11 1,83 2,53 CFSteel 11,65 1421,4 94,77 11,05 38,31 14,76 1,81 % 1,1 0,8 0,2 1,0 3,0 2,3 1,1 % 1,1 0,8 0,2 1,0 3,0 2,3 1,1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 3,0 CFSteel 13,95 1691,43 112,47 10,91 44,15 17,16 1,79 3,2 Прушиньски 14,99 1780,88 119,52 10,9 3,1			%	0,9	1,4	0,7	1,2	2,6	1,8	1,1
$\Sigma 300 = \frac{2,0}{5} = \frac{CFSteel}{2,0} = \frac{9,33}{1145,06} = \frac{11,08}{76,35} = \frac{11,08}{11,08} = \frac{31,44}{31,44} = \frac{12,16}{12,16} = \frac{1,84}{1,84} = \frac{9,63}{1,1} = \frac{11,05}{1,11} = \frac{11,05}{1,11}$			Прушиньски	9,47	1137,96	76,37	10,96	32,44	12,47	1,85
$\Sigma 300 = \frac{\%}{1.5} \frac{\%}{1.6} \frac{1.5}{1.75} \frac{1.6}{1.6} \frac{1.1}{1.78} \frac{1.1}{1.78} \frac{1.1}{1.409,44} \frac{1.1}{1.94,59} \frac{1.1}{1.94} \frac{1.1}{1.95} \frac{1.1}{1.11} \frac{1.1}{1.83} \frac{1.1}{1.11} \frac{1.1}{1.83} \frac{1.1}{1.11} \frac{1.1}{1$		2,0	CFSteel	9,33	1145,06	76,35	11,08	31,44	12,16	1,84
Σ 300 Πрушиньски 11,78 1409,44 94,59 10,94 39,5 15,11 1,83 Σ 300 CFSteel 11,65 1421,4 94,77 11,05 38,31 14,76 1,81 % 1,1 0,8 0,2 1,0 3,0 2,3 1,1 3,0 CFSteel 13,95 1691,43 112,78 11,01 44,75 17,16 1,79 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 3,2 CFSteel 14,86 1797,68 119,86 11 47,2 18,07 1,78 3,2,0 CFSteel 10,31 1671,17 95,51 12,73 31,45 12,16 <t< td=""><td></td><td></td><td>%</td><td>1,5</td><td>0,6</td><td>0,0</td><td>1,1</td><td>3,1</td><td>2,5</td><td>0,5</td></t<>			%	1,5	0,6	0,0	1,1	3,1	2,5	0,5
Σ 300 2,5 CFSteel 11,65 1421,4 94,77 11,05 38,31 14,76 1,81 % 1,1 0,8 0,2 1,0 3,0 2,3 1,1 3,0 2,3 1,1 0,8 0,2 1,0 3,0 2,3 1,1 3,0 2,3 1691,43 112,47 10,91 46,15 17,57 1,81 3,0 CFSteel 13,95 1691,43 112,78 11,01 44,75 17,16 1,79 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 11 44,75 17,16 1,79 9 0,9 0,3 0,9 3,0 2,3 1,1 3,2 CFSteel 14,86 1797,68 119,86 11 47,2 18,07 1,78 3,2 1,4 10,47 1668,95 95,92 12,63 32,61 12,54 1,76 2,0 СБ 0,1 0,4<			Прушиньски	11,78	1409,44	94,59	10,94	39,5	15,11	1,83
$\Sigma 300 \qquad \qquad$		2,5	CFSteel	11,65	1421,4	94,77	11,05	38,31	14,76	1,81
Σ 300 Прушиньски 14,08 1675,78 112,47 10,91 46,15 17,57 1,81 3,0 CFSteel 13,95 1691,43 112,78 11,01 44,75 17,16 1,79 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 3,2 Прушиньски 14,99 1780,88 119,52 10,9 48,7 18,51 1,8 3,2 CFSteel 14,86 1797,68 119,86 11 47,2 18,07 1,78 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,76 2,0 CFSteel 10,47 1668,95 95,92 12,63 32,61 12,54 1,76 2,0 CFSteel 10,31 1671,17 95,51 12,73 3	Σ 300		%	1,1	0,8	0,2	1,0	3,0	2,3	1,1
$\Sigma 350 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 300		Прушиньски	14,08	1675,78	112,47	10,91	46,15	17,57	1,81
Σ 350 1 % 0,9 0,9 0,3 0,9 3,0 2,3 1,1 3,2 Прушиньски 14,99 1780,88 119,52 10,9 48,7 18,51 1,8 3,2 CFSteel 14,86 1797,68 119,86 11 47,2 18,07 1,78 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 1,5 0,1 0,4 0,8 3,6 3,0 0,6 Прушиньски 13,04 2068,84 118,9 12,6 39,7 15,18 1,75 3,0 СЕ S		3,0	CFSteel	13,95	1691,43	112,78	11,01	44,75	17,16	1,79
Σ 350 Прушиньски 14,99 1780,88 119,52 10,9 48,7 18,51 1,8 3,2 CFSteel 14,86 1797,68 119,86 11 47,2 18,07 1,78 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,9 0,9 0,3 0,9 3,1 2,4 1,1 % 0,47 1668,95 95,92 12,63 32,61 12,54 1,76 2,0 CFSteel 10,31 1671,17 95,51 12,73 31,45 12,16 1,75 2,0 Ipyшиньски 13,04 2068,84 118,9 12,6 39,7 15,18 1,75 2,5 CFSteel 12,88 2076,41 118,67 12,7 38,32 14,75			%	0,9	0,9	0,3	0,9	3,0	2,3	1,1
$\Sigma 350 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Прушиньски	14,99	1780,88	119,52	10,9	48,7	18,51	1,8
$\Sigma 350 = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$		3,2	CFSteel	14,86	1797,68	119,86	11	47,2	18,07	1,78
$\Sigma 350 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			%	0,9	0,9	0,3	0,9	3,1	2,4	1,1
$\Sigma 350 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Прушиньски	10,47	1668,95	95,92	12,63	32,61	12,54	1,76
$\Sigma 350 \qquad \qquad$		2,0	CFSteel	10,31	1671,17	95,51	12,73	31,45	12,16	1,75
$\Sigma 350 \qquad \qquad$			%	1,5	0,1	0,4	0,8	3,6	3,0	0,6
$\Sigma 350 \qquad \qquad$			Прушиньски	13,04	2068,84	118,9	12,6	39,7	15,18	1,75
$\Sigma 350 \qquad \boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$		2,5	CFSteel	12,88	2076,41	118,67	12,7	38,32	14,75	1,73
2 330 Прушиньски 15,58 2461,86 141,49 12,57 46,39 17,65 1,73 3,0 CFSteel 15,43 2473,19 141,34 12,66 44,76 17,14 1,7 % 1,0 0,5 0,1 0,7 3,5 2,9 1,7 3,2 Прушиньски 16,6 2517,16 150,41 12,56 48,95 18,58 1,72 3,2 CFSteel 16,44 2629,54 150,28 12,65 47,23 18,05 1,7 % 1,0 4,5 0,1 0,7 3,5 2,9 1,2	N 250		%	1,2	0,4	0,2	0,8	3,5	2,8	1,1
3,0 CFSteel 15,43 2473,19 141,34 12,66 44,76 17,14 1,7 % 1,0 0,5 0,1 0,7 3,5 2,9 1,7 16,6 2517,16 150,41 12,56 48,95 18,58 1,72 3,2 CFSteel 16,44 2629,54 150,28 12,65 47,23 18,05 1,7 % 1,0 4,5 0,1 0,7 3,5 2,9 1,2	2 330		Прушиньски	15,58	2461,86	141,49	12,57	46,39	17,65	1,73
% 1,0 0,5 0,1 0,7 3,5 2,9 1,7 Прушиньски 16,6 2517,16 150,41 12,56 48,95 18,58 1,72 3,2 CFSteel 16,44 2629,54 150,28 12,65 47,23 18,05 1,7 % 1,0 4,5 0,1 0,7 3,5 2,9 1,2		3,0	CFSteel	15,43	2473,19	141,34	12,66	44,76	17,14	1,7
Прушиньски 16,6 2517,16 150,41 12,56 48,95 18,58 1,72 3,2 CFSteel 16,44 2629,54 150,28 12,65 47,23 18,05 1,7 % 1,0 4,5 0,1 0,7 3,5 2,9 1,2			%	1,0	0,5	0,1	0,7	3,5	2,9	1,7
3,2 CFSteel 16,44 2629,54 150,28 12,65 47,23 18,05 1,7 % 1,0 4,5 0,1 0,7 3,5 2,9 1,2			Прушиньски	16,6	2517,16	150,41	12,56	48,95	18,58	1,72
% 1,0 4,5 0,1 0,7 3,5 2,9 1,2		3,2	CFSteel	16,44	2629,54	150,28	12,65	47,23	18,05	1,7
			%	1,0	4,5	0,1	0,7	3,5	2,9	1,2

В Таблице 1.1.5 представлено сравнение геометрических характеристик С-образных сечений, приведённых в Руководстве по проектированию и монтажу компании BlueScope Steel Limited: LYSAGHT Zeds and Cees [27], с результатами расчёта в программе CFSteel. Расчётная толщина $t = t_{nom}$.

Таблица 1.1.5 - С-образные профили. Сопоставление результатов, полученных в CFSteel, с данными, приведёнными в Руководстве по проектированию и монтажу компании BlueScope Steel Limited: LYSAGHT Zeds and Cees [27]

		Истонии				X	арактерис	тики пол	ного сече	ния		
Профиль	t,	расхожле	ак, чие			W			W			Центр
профиль	MM	расложде		A, cm^2	I _x , см ⁴	w_x	і _х , см	I _y , см ⁴	(y_y, y_y)	і _у , см	z ₀ , см	изгиба
		B /0				CIVI			CIVI			х _с , см
1	2	3		4	5	6	7	8	9	10	11	12
		Lysaght		2,16	36,4	7,13	4,11	7,55	2,19	1,87	1,66	-3,99
C10010	1	CFSteel		2,16	36,4	7,13	4,11	7,55	2,19	1,87	1,66	-4,02
			%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,8
		Lysaght		2,58	43,2	8,48	4,1	8,92	2,59	1,86	1,66	-3,97
C10012	1,2	CFSteel		2,58	43,2	8,48	4,1	8,92	2,59	1,86	1,66	-4,00
			%	0,0	0,0	0,0	0,0	0	0,0	0,0	0,0	0,8
		Lysaght		3,23	53,7	10,5	4,08	11,2	3,29	1,87	1,69	-4,01
C10015	1,5	CFSteel		3,23	53,7	10,5	4,08	11,2	3,29	1,87	1,69	-4,04
			%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	0,8
		Lysaght		4,09	67,3	13,2	4,06	14,2	4,21	1,87	1,72	-4,04
C10019	1,9	CFSteel		4,09	67,3	13,2	4,06	14,2	4,21	1,87	1,72	-4,06
			%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	0,5
		Lysaght		3,54	129	17	6,04	18,8	4,17	2,31	1,89	-4,65
C15012	1,2	CFSteel		3,54	129	17	6,04	18,8	4,17	2,31	1,89	-4,68
			%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6
-		Lysaght		4,43	161	21,1	6,02	23,7	5,29	2,31	1,92	-4,69
C15015	1,5	CFSteel		4,43	161	21,1	6,02	23,7	5,28	2,31	1,92	-4,72
			%	0,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,6
		Lysaght		5.61	202	26.6	6	30	6.74	2.31	1.95	-4.71
C15019	1.9	CESteel		5.61	202	26.6	6	30	6.74	2.31	1.95	-4,74
	y-		%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
		I vsaght	, -	7.12	254	33.5	5.98	38.6	8.79	2.33	2.01	-4.8
C15024	2.4	CESteel		7.12	254	33.5	5.98	38.6	8.78	2.33	2.01	-4.8
015021	2,1	CI Steel	%	0.0	0.0	0.0	0.0	0.0	0.1	2,33	2,01	0.0
		Lysaght	, 0	5.55	353	34.7	7.97	39.6	7.17	2.67	2.07	-5.16
C20015	15	CESteel		5 55	352	34.7	7 97	39.6	7.17	2.67	2.07	-5.20
020015	1,5	CI Steel	%	0.0	03	0.0	0.0	0.0	0.0	2,07	2,07	0.8
		I vsaght	/0	7.13	451	44.4	7 96	53.1	9 77	2.73	2.18	-5 36
C20019	19	CESteel		7.13	451	44.4	7.96	53	9.77	2 73	2.17	-5 39
020017	1,7	CISICI	0/0	,15	0.0	,- 0 0	7,50	02	0.0	2,75	2,17	-5,57
		Lysaght	70	9.04	569	56	7.93	68.1	12.7	2 74	2 24	-5 44
C20024	24	CEStool		9.04	569	56	7.93	68	12,7	2,74	2,24	-5.47
C20024	2,4	CrSteer	0/	0.0	0.0	0.0	7,75	00	12,7	2,74	2,23	-5,47
		Lycoght	70	8.08	762	60	9.71	56.1	9.86	2 64	1.91	-4.85
C25010	10	CESteel		8.08	762	60	9,71	56.1	9.86	2,04	1,91	-4,05
023017	1,7	CrSteer	0/	0,00	102	00	9,71	0.0	,00	2,04	1,71	-4,07
		Lysaght	70	10.2	962	757	9.69	72.1	12.8	2 65	1.96	-4.93
C25024	24	CESteel		10,2	962	757	9,69	72,1	12,0	2,05	1,90	-4,95
023024	2,4	CrSteel	0/	0.0	0.0	,,,,	0.0	0.0	12,0	2,05	0.5	
		Lycocht	/0	12.6	1700	113	11.6	151	21.7	3.46	2.62	-6.6
C30024	21	CEStool		12,0	1608	113	11,0	151	21,7	3.46	2,02	-6.6
030024	2,4	Croteel	0/_	12,0	0.1	115	11,0	1.51	21,7	0,40	2,05	-0,0
		Iwacht	/0	16	2130	142	11.6	106	28.5	3.5	2.63	-6 70
C30030	3	CESteel		16	2130	142	11,0	190	28,5	3,5	2,03	-6.82
030030	5	CrSteel	0/	10	2135	142	11,0	190	20,3	5,5	2,15	-0,02
			70	0,0	0,1	0,0	0,0	0,0	0,0	0,0	3,8	0,4

1.2. Вычисление геометрических характеристик эффективного сечения

1.2.1. Вычисление геометрических характеристик эффективного сечения Собразного профиля в соответсвии с СП 260.1325800.2016

Задание: В программе CFSteel выполнить расчёт геометрических характеристик полного и эффективного сечения С-образного профиля из Example H Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123, 2008.- 235 р. [10]. В данном Примере характеристики эффективного сечения вычислены для двух случаев напряжённодеформированного состояния сечения: а) равномерное сжатие: б) изгиб относительно центальной оси, параллельной стенке. Расчёт выполнить в соответствии с СП 260.1325800.2016 [1].

Размеры сечения: *h* =102 *мм*, *t* =2 *мм*, *b* =120 *мм*, *c* =26 *мм*, *r* =10 *мм* (внутренний).

Рисунок 1.2.1 – Поперечное сечение

В Примере H сталь в соответствиии с EC3: $E=210000 \text{ N/mm}^2$, $f_y = 355 \text{ N/mm}^2$, $\gamma_{M0} = 1,0$. Сталь без покрытия.

В соответствии с СП 260: $E = 206000 \ H/MM^2$, $R_{yn} = 355 \ H/MM^2$, коэффициент надёжности по материалу $\gamma_m = 1,05$ (п. 6.1 [1]). Тогда $R_y = 355/1,05 = 338,1 \ H/MM^2$.

Площадь эффективного сечения A_{ef} при равномерном сжатии $\sigma_{com} = R_y = const$

Рисунок 1.2.2 - Распределение напряжений (+ сжатие)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Наименование	Обозн.	озн. Ед. Значение изм. [10]		Значение CFSteel	Расхож дение, %
Площадь сечения	A_g	см ²	7,34	7,34	0
Расстояние от срединной линии стенки до центра тяжести	x_S	ММ	50,96	50,96	0
Расстояние от отгибов до центра тяжести	x_S '	ММ	67,04	67,04	0
Момент инерции	I_x	cm ⁴	139,10	139,16	0,04
Момент инерции	I_{y}	cm ⁴	140,45	140,53	0,06
Момент сопротивления сечения	$W_{y lip}$	cm ³	20,64	20,66	0,01
Радиус инерции	i_x	MM	43,53	43,54	0,02
	i_{y}	MM	43,74	43,75	0,02
Расстояние от центра тяжести до центра изгиба	x_0	ММ	-115,31	-115,73	0,4
Момент инерции при кручении (без учёта радиусов закругления)	I_t	cm ⁴	0,103	0,103	0
Секториальный момент инерции (без учёта радиусов закругления)	I_w	см ⁶	4728,07	4728,07	0

Таблица 1.2.1 – Геометрические характеристики полного сечения

(с учётом радиусов закругления)

Таблица 1.2.2 – Параметры стенки

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	0,997	0,997	0
Коэффициент редуцирования	ρ		(7.13)	0,782	0,782	0
Эффективная часть	h_{ef}	MM	Таблица 7.2	73,16	73,15	0,01
	h_{e1}	MM		36,58	36,57	0,03
	h_{e2}	MM		36,58	36,57	0,03

В таблице 1.2.3 приведено сравнение значений параметров эффективности стенки, полученных по СП 260, с соответствующими значениями Примера Н [10], полученными по EC3. В Примере Н в соответствии с нормами EC3 принималось: $E=210000 \text{ N/mm}^2$, $f_y =355 \text{ N/mm}^2$, частный коэффициент $\gamma_{M0}=1,0$. Результаты сравнения приведены в столбце 6 Таблицы. Расхождение составляет 1,2...1,5%. Также были выполнены расчёты по методике СП 260, но исходные данные принимались как в Примере Н [10]: $E=210000 \text{ N/mm}^2$, $R_{yn} = f_y = 355 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0} = 1,0$. Расчёт выполнен в программе CFSteel. Сравнение результатов, полученных таким образом, с данными Примера Н [10] приведено в столбцах 7 и 8. Отмечается практическое совпадение результатов. Это говорит о том, что методика определения эффективных ширин пластинки в СП 260 в целом совпадает с методикой, заложенной в нормах EC3. Различие заключается в разных значениях модуля упругости *E* и коэффициентов: частного коэффициента γ_{M0} и коэффициента надёжности по материалу γ_m .

Таблица 1.2.3 – Параметры стенки. Сравнение результатов по СП 260 и ЕС3												
Наименование	Обозн.	Ед.	Значение по [10]	Значение по СП 260	Расхожде	Значение п СП 260 [*]						

Наименование	Обозн.	Ед. изм.	Значение по [10] (EC3)	Значение по CП 260 (CFSteel)	Расхожде ние,%	Значение по СП 260 [*] (CFSteel)	Расхожде ние [*] ,%
1	2	3	4	5	6	7	8
Гибкость пластинки	$\overline{\lambda_p}$		1,012	0,997	1,5	1,012	0
Коэффициент	ρ		0,773	0,782	1,2	0,774	0,1
редуцирования							
Эффективная часть	h_{ef}	MM	72,3	73,16	1,2	72,37	0,1
	h_{e1}	ММ	36,15	36,58	1,2	36,19	0,1
	h_{e2}	MM	36,15	36,58	1,2	36,19	0,1

D

*- Результаты получены по СП 260 но с $E=210000 \text{ N/mm}^2$, $R_{yn} = f_y = 355 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0} = 1,0$

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение Значение CFSteel		Расхож дение, %					
Пояс											
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	1,189	1,188	0					
Коэффициент редуцирования	ρ		(7.13)	0,686	0,685	0					
Эффективная ширина	b_{ef}	MM	Табл. 7.2	76,41	76,49	0,1					
	b_{el}	MM		38,21	38,25	0,1					
	b_{e2}	ММ		38,21	38,25	0,1					
		Отгиб									
Коэффициент потери	kσ		7.3.2.6	0,5	0,5	0					
устойчивости											
Гибкость пластинки	λ_p		(7.18)	0,656	0,656	0					
Коэффициент редуцирования	ρ		(7.15)	1	1	0					
Эффективная ширина	C_{ef}	MM	Табл. 7.2	21,78	21,78	0					

Таблица 1.2.4 – Параметры пояса и отгиба ($K = \infty$, $\sigma_{com} = R_y$)

В таблице 1.2.5 приведено сравнение значений параметров эффективности пояса и отгиба, полученных по СП 260, с соответствующими значениями Примера Н [10], полученными по ЕСЗ. В Примере Н в соответствии с нормах ЕСЗ принималось: E=210000 N/mm², $f_y = 355$ N/mm², частный коэффициент $\gamma_{M0} = 1,0$. Результаты сравнения приведены в столбце 6. Расхождение составляет 1,2...1,5%. В столбцах 7 и 8 приведены результаты вычислений по методике СП 260, но исходные данные принимались как в Примере Н [10], т.е.: E=210000 N/mm², $R_{yn} = f_y = 355$ N/mm², $\gamma_m = \gamma_{M0} = 1,0$. Расчёт выполнен в CFSteel. Отмечается совпадение результатов.

-	•		-	· ·						
Наименование	Обозн.	Ед. изм.	. Значение Значение по [9] СП 260 (EC3) (CFSteel		Расхожде ние,%	Значение по СП 260 [*] (CFSteel)	Расхожде ние [*] ,%			
1	2	3	4	5	6	7	8			
Пояс										
Гибкость пластинки	$\overline{\lambda_p}$		1,206	1,188	1,5	1,206	0			
Коэффициент	ρ		0,678	0,685	1,0	0,678	0			
редуцирования										
Эффективная	b_{ef}	MM	75,6	76,49	1,2	75,6	0			
ширина	, i i i i i i i i i i i i i i i i i i i									
-	b_{el}	MM	37,8	38,25	1,2	37,8	0			
	b_{e2}	ММ	37,8	38,25	1,2	37,8	0			
			От	гиб						
Гибкость пластинки	$\overline{\lambda_p}$		0,666	0,656	1,5	0,666	0			
Коэффициент	ρ		1	1	0	1	0			
редуцирования Эффективная ширина	C _{ef}	ММ	21,78	21,78	0	21,78	0			

Таблица 1.2.5 – Параметры пояса и отгиба . Сравнение результатов по СП 260 и ЕСЗ

*- Результаты получены по СП 260 но с $E=210000 N/mm^2$, $R_{yn} = f_y = 355 N/mm^2$, $\gamma_m = \gamma_{M0} = 1,0$

Таблица 1.2.6 – Эффективные характеристики краевого элемента жёсткости

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Эффектив	ные характе	ристики в	раевого элем	ента жёсткос	ГИ	
Площадь	A_S	MM ²		123,4	123,5	0,1
Расстояние между срединной	e_S	MM		5,20	5,20	0
линией пояса и осью						

Сечение											
элемента жёсткости Расстояние между срединной линией стенки и осью 	b_1	ММ		104,04	103,94	0,1					
элемента жесткости Эффективный момент инерции	I_S	MM ⁴		7157	7159	0,03					
		Жёсткості	ь связи								
Жёсткость связи Критическое напряжение потери устойчивости краевого	$K \sigma_{ m cr,s}$	Н/мм ² Н/мм ²	(7.29) (7.28)	0,165 252,5	0,165 252,7	0 0,08					
отгиба Гибкость Коэффициент снижения несущей способности	$\overline{\lambda_d}$ Xa		7.3.2.9 7.3.2.9	1,157 0,633	1,157 0,634	0 0,15					

Поскольку результаты, полученные с помощью программы на предыдущем шаге, практически совпадают с результатами ручного расчёта, приводим итерационное уточнение, выполненное по программе (Таблица 1.2.7). Итерации заканчиваются при разнице в значениях χ_{di} и χ_{di-1} , не превышающей 0,1%.

Таблица 1.2.7 – Итерационный процесс уточнения эффективных параметров элемента жёсткости

			Ел	Нач	Первая итерация			Вто	эрая итер	рация	Третья итерация		
	Параметр		изм.	расчёт	CFSteel	[9]	CFSteel *	CFSteel	[9]	CFSteel *	CFSteel	CFSteel *	CFSteel (EC3)
Элемент	Коэффициент снижения несущей способности	<i>X</i> _{<i>d</i>,<i>n</i>-1}		1,0	0,634	0,617	0,623	0,612	0,596	0,600	0,612	0,598	0,598
Пояс ψ=1	Гибкость пластинки	$ar{\lambda}_{ m pi}$		1,188	0,946	0,947	0,952	0,930	0,931	0,934	0,934	0,933	0,933
<i>k</i> ₀ =4	Коэффициент редуцировани я	ρ		0,685	0,811	0,811	0,808	0,821	0,820	0,818	0,822	0,819	0,819
	Эффективная ширина	b_{e2c}	ММ	41,47	48,47	48,46	49,28	49,01	48,96	48,86	49,04	48,90	48,90
Отгиб ψ=1	Гибкость пластинки	$ar{\lambda}_{ m pi}$		0,656	0,522	0,523	0,525	0,514	0,514	0,516	0,513	0,515	0,515
k _σ =0,5	Коэффициент редуцировани я	ρ		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
	Эффективная ширина	C _{efc}	ММ	25,00	25,00	25,00	25,00	25,00	25,00	25,00	25,00	25,00	25,00
Элемент жёсткос	Эффективная площадь	A_s	MM ²	123,5	137,50	137,48	137,12	138,57	138,48	138,28	138,65	138,37	138,36
ти	Расстояние	b_{I}	MM	103,94	100,79	100,80	100,87	100,54	100,57	100,61	100,52	100,59	100,59
	Момент инерции	Is	MM ⁴	7159	7503,7	7330,0 0	7495,4	7527,3	7352,0 0	7520,9	7528,98	7522,80	7522,80
	Жёсткость связи	K_l	Н/ мм ²	0,165	0,177	0,181	0,180	0,178	0,182	0,181	0,178	0,181	0,181
	Критическое напряжение потери устойчивости краевого отгиба	$\sigma_{cr,s}$	H/ MM ²	252,7	240,33	242,82	245,26	239,48	242,17	244,32	239,42	244,25	244,25
	Коэффициент снижения	$X_{d,n}$		0,634	0,612	0,596	0,600	0,611	0,595	0,598	0,611	0,598	0,598
	Редуцированн ая площадь	$A_{s,red}$	MM ²								84,69	82,79	82,79

*- Результаты получены по СП 260 но с $E=210000 N/mm^2$, $R_{yn} = f_y = 355 N/mm^2$, $\gamma_m = \gamma_{M0} = 1,0$

Эффективные размеры элемента жёсткости (результат итерационного процесса) представлены в Таблице 1.2.8.

	1 1					
Элемент	Параметр	Ед. изм.	СП 260	Значение [10]	CFSteel [*]	CFSteel ^{**} (EC3)
Пояс	$b_{el,c}$	MM	41,47	41,02	41,03	41,03
	$b_{e2,c}$	MM	49,04	48,96	48,90	48,90
Стенка	$h_{e1,c} = h_{e2,c}$	MM	39,79	39,37	39,41	39,41
Отгиб	$C_{eff,c}$	MM	25,00	25,00	25,00	25,00
Редуцированная толщина элемента жёсткости	t_{red}	ММ	1,222	1,190	1,197	1,197

Таблица 1.2.8 - Эффективные размеры сечения

*- Результаты получены по CFSteel (СП 260) но с $E=210000 \text{ N/mm}^2$, $R_{yn} = f_y = 355 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0} = 1,0$

** -В последнем столбце Таблицы 1.2.8 приведены данные, полученные в CFSteel для норм ЕС3

Размеры и геометрические характеристики эффективного сечения представлены на Рисунке 1.2.3 и в Таблице 1.2.9.

Рисунок 1.2.3 – Размеры эффективного сечения (сжатие); значения в скобках – результат CFSteel

Таблица	1.2.9 -	- Геометрически	ие характе	ристики э	ф	b ективного	сечения
1 wound	1.1.1.2	r comorphi teena	ie napencie	prio man o	Ϋ́	p • minipilion o	

Наименование	Обозн.	Ед. изм.	Значение	Значение CFSteel (СП 260)	Расхожде ние,%	Значение по [10] (EC3)	Значение CFSteel [*]
Площадь	A_{ef}	см ²	4,752	4,756	0,08	4,67	4,68
Расстояние от срединной линии стенки до центра тяжести эффективного сечения	x _{Sef}	СМ	4,29	4,311	0,5	-	
Момент инерции относительно оси Х	I _{xef}	см4	88,693	88,73	0,05	87,24	87,46
Момент сопротивления сечения относительно оси <i>X</i>	W _{xef}	см ³	17,39	17,40	0,06	-	17,15
Радиус инерции относительно оси Х	i_x	СМ	4,32	4,320	0	-	4,32
Момент инерции относительно оси У	I _{vef}	см4	96,704	96,765	0,06	94,80	95,22
Момент сопротивления сечения относительно оси <i>Y</i> (стенка)	Wywef	см ³	22,028	21,94	0,4	-	21,73
Момент сопротивления сечения относительно оси <i>Y</i> (отгиб)	Wylef	см ³	12,775	12,82	0,4	-	12,56
Радиус инерции относительно оси У	i_{y}	СМ	4,51	4,511	0	-	4,51
Расстояние от наружной грани стенки до цента тяжести	Z _{0ef}	ММ	43,9	44,1	0,5	43,72	43,82

*- Результаты получены по СП 260 но с $E=210000 N/mm^2$, $R_{yn} = f_y = 355 N/mm^2$, $\gamma_m = \gamma_{M0} = 1,0$

Определение геометрических характеристик эффективного сечения при изгибе относительно оси у - у (отгибы сжаты)

Рисунок 1.2 4 - Распределение напряжений (изгиб)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

(Обозначение эффективных участков пояса b_{e1} и b_{e2} соответствует принятому в Таблице 7.2 [1]) Таблица 1.2.10 – Эффективные размеры

Наименование	Обозн.	Ед. изм.	Пункт (формул а) СП 260	Значение	Значение CFSteel	Расхожд ение,%				
Пояс										
Отношение напряжений	ψ		Таб.7.2	-0,748	-0,748	0				
Коэффициент устойчивости	k_{σ}		Таб.7.2	17,98	17,99	0				
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	0,561	0,560	0,2				
Эффективная ширина	b_{ef}	ММ	Таб.7.2	63,82	63,81	0				
	b_{e1}	MM		25,53	25,53	0				
	b_{e2}	MM		38,29	38,29	0				

Таблица 1.2.11-Эффективные характеристики краевого элемента жёсткости

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Эффектив	ные характе	еристики в	траевого элем	ента жёсткос	ги	
Площадь	A_S	MM ²		98,04	98,05	0
Расстояние между срединной	e_S	MM		6,55	6,55	0
линией пояса и осью элемента жёсткости Расстояние между срединной линией стенки и осью элемента жёсткости Эффективный момент инерции	b ₁ Is	мм мм ⁴		109,39 6286	109,40 6284	0 0,03
Жёсткость связи и х	арактеристи	і ки редуци	ирования крае	вого элемент	а жёсткости	
Жёсткость связи	K	H/mm ²	(7.29)	0,146	0,146	0
Критическое напряжение	$\sigma_{cr.s}$	H/MM^2	(7.28)	280,49	280,26	0,08
потери устойчивости краевого отгиба						
Гибкость	$\overline{\lambda_d}$		7.3.2.9	1,098	1,098	0
Коэффициент снижения	χd		7.3.2.9	0,676	0,676	0
несущей способности						

Уточнение производится итерационным расчётом в соответствии с Приложением Б [1] повторяя предыдущий этап. Итерации заканчиваются при разнице в значениях χ_{di} и χ_{di-1} , не превышающей 0,1%. Результаты вычислений и результаты, полученные в CFSteel, приведены в Таблице 1.2.12

			E	Цон	Первая итерация	
	Параметр		ĽД. ИЗМ.	пач. расчёт	Ручной расчёт	CFSteel
Элемент	Коэффициент снижения несущей способности	<i>X</i> _{<i>d</i>,<i>n</i>-1}		1,0	0,676	0,617
Пояс	Гибкость пластинки	$\bar{\lambda}_{ m pi}$		0,561		0,461
	Коэффициент редуцирования	ρ		1	1	1
	Эффективная ширина	<i>b_{e2c}</i> (Рис.Б.2 [1])	ММ	28,75	28,75	28,75
Отгиб	Эффективная ширина	C_{efc}	ММ	25,00	25,00	25,00
Элемент	Эффективная площадь	A_s	MM ²	98,04	98,04	98,05
жёсткости	Расстояние	b_1	ММ	109,39	109,39	109,40
	Момент инерции	I_s	MM ⁴	6286	6286	6284
	Жёсткость связи	K_1	Н/ мм ²	0,146	0,146	0,146
	Критическое напряжение потери устойчивости	$\sigma_{cr,s}$	Н/ мм ²	280,49	280,49	280,26
	Коэффициент снижения	$X_{d,n}$		0,676	0,676	0,676
	Редуцированная площадь	$A_{s,red}$	MM ²		80,0	81,0

Таблица 1.2.12 – Итерационный процесс уточнения эффективных параметров элемента жёсткости

Геометрические характеристики эффективного сечения приведены в Таблице 1.2.13.

		1	1
$1.90 \pi W H_2 = 1.7 + 3.5$. Геометрицеские у	anavrenueruvu ad	
1 аблица 1.2.15 -	- I COMCIPTICCATE A	арактеристики эч	

Наименование	Обозн.	Ед. изм.	Значение	Значение CFSteel	Расхож дение, %	Значение [10]	Значение CFSteel [*]	Расхож дение, %
Площадь сечения	A_{ef}	см ²	6,978	6,964	0,2	6,86	6,86	0
Расстояние между срединной линией стенки и центром тяжести сечения	X_{Sef}	СМ	4,791	4,78	0,2	-	-	-
Момент инерции относительно оси <i>X</i>	Ixef	см ⁴	132,081	131,776	0,2	129,73	129,777	0,04
Момент инерции относительно оси <i>Y</i>	Iyef	см ⁴	127,167	126,579	0,5	122,49	122,544	0,04
Момент сопротивления сечения относительно оси <i>Y</i> (стенка)	Wywef	см ³	26,006	25,994	0,04	25,59	25,599	0,04
Момент сопротивления сечения относительно оси <i>Y</i> (отгибы)	Wylef	см ³	17,929	17,824	0,6	17,04	17,047	0,04

* - Результаты получены по CFSteel (методика СП 260) но с $E=210000 N/mm^2$, $R_y = f_y = 355 N/mm^2$ и $\gamma_m = \gamma_{M0} = 1,0$

Определение геометрических характеристик эффективного сечения при изгибе относительно оси у - у (стенка сжата)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	0,997	0,997	0
Коэффициент редуцирования	ρ		(7.13)	0,782	0,782	0
Эффективная часть	h_{ef}	MM	Таблица 7.2	73,16	73,15	0,01
	h_{el}	MM		36,58	36,57	0,03
	h_{e2}	MM		36,58	39,57	0,03

Таблица 1.2.14 – Параметры стенки

Геометрические характеристики эффективного сечения приведены в Таблице 1.2.15.

Наименование	Обозн.	Ед. изм.	Значение	Значение CFSteel	Расхожде ние,%
Площадь сечения	A_{ef}	см ²	6,934	6,934	0
Расстояние между срединной линией стенки и центром тяжести сечения	X_{Sef}	СМ	5,396	5,396	0
Момент инерции относительно оси У	I_{vef}	cm ⁴	129,296	129,306	0
Радиус инерции относительно оси Ү	i_{vef}	см	4,318	4,318	0
Момент сопротивления сечения относительно оси <i>Y</i> (стенка)	W _{ywef}	cm ³	23,525	23,526	0
Момент сопротивления сечения относительно оси <i>Y</i> (отгибы)	W_{ylef}	см ³	19,879	19,882	0,02

На Рисунках 1.2.5 – 1.2.8 представлены результаты вычислений в программе CFSteel.

Рисунок 1.2.5 – Результаты расчёта. Характеристики полного сечения

	Ce	ечение					
С Результаты					-		\times
Общие данные Характеристики полного сечения Характеристин	и эффекти	вного сечения					
Наименование характеристики	Обозн.	Значение Ед.изм.					
Площадь поперечного сечения	A _{ef}	4,76 cm ²					
Момент инерции относительно оси Х	I _{x ef}	88,73 см ⁴					
Момент сопротивления сечения для верхнего волокна	W _{xs ef}	17,40 см ³					
Момент сопротивления сечения для нижнего волокна	W _{xH ef}	17,40 см ³		A	Y		
Радиус инерции относительно оси Х	ⁱ x ef	4,32 см					
Момент инерции относительно оси Ү	I _{y ef}	96,76 cm ⁴					
Момент сопротивления сечения для левого волокна	W _{улев ef}	21,94 cm ³			цт		
Момент сопротивления сечения для правого волокна	W _{ynp ef}	12,82 cm ³					x
Радиус инерции относительно оси Ү	ⁱ yef	4,51 cm					
Расстояние от левого волокна стенки до центра тяжести сечения	z _{0 ef}	4,41 cm				2	
Расстояние от нижнего волокна до центра тяжести сечения	Ү _{цт ef}	5,10 cm					
			*				
			1 >				
				HTML	Закрыть	Спр	авка

Рисунок 1.2.6 – Результаты расчёта. Характеристики эффективного сечения (сжатие)

С Результаты		
Общие данные Характеристики полного сечения Характеристи	ки эффект	ивного сечения
Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A _{ef}	6,964 см ²
Момент инерции относительно оси Х	I _{x ef}	131,776 см ⁴
Момент сопротивления сечения для верхнего волокна	W _{xB ef}	25,838 см ³
Момент сопротивления сечения для нижнего волокна	W _{xH ef}	25,838 см ³
Радиус инерции относительно оси Х	i _{x ef}	4,350 см
Момент инерции относительно оси Ү	I _{y ef}	126,579 см ⁴
Момент сопротивления сечения для левого волокна	W _{улев ef}	25,944 см ³
Момент сопротивления сечения для правого волокна	Wynp ef	17,824 cm ³
Радиус инерции относительно оси Ү	ⁱ y ef	4,263 см
Расстояние от левого волокна стенки до центра тяжести сечения	z _{0 ef}	4,879 _{CM}
Расстояние от нижнего волокна до центра тяжести сечения	Y _{ut ef}	5,100 cm

Рисунок 1.2.7 – Результаты расчёта. *Характеристики эффективного сечения при изгибе* (отгибы сжаты)

	Ce	гчение				
С Результаты				_		×
Общие данные Характеристики полного сечения Характеристик	ки эффекти	ивного сечения				
Наименование характеристики	Обозн.	Значение Ед.изм.				
Площадь поперечного сечения	A _{ef}	6,934 см ²				
Момент инерции относительно оси Х	I _{x ef}	139,020 см ⁴				
Момент сопротивления сечения для верхнего волокна	W _{xs ef}	27,259 cm ³				
Момент сопротивления сечения для нижнего волокна	W _{xH ef}	27,259 cm ³		<u></u> Υ		
Радиус инерции относительно оси Х	i _{x ef}	4,478 _{CM}				
Момент инерции относительно оси Ү	I _{y ef}	129,306 cm ⁴				
Момент сопротивления сечения для левого волокна	W _{улев ef}	23,526 cm ³		<u>ц</u> т		
Момент сопротивления сечения для правого волокна	W _{ynp ef}	19,882 см ³				x
Радиус инерции относительно оси Ү	ⁱ yef	4,318 _{CM}		1 1		
Расстояние от левого волокна стенки до центра тяжести сечения	z _{0 ef}	5,496 CM				
Расстояние от нижнего волокна до центра тяжести сечения	Ү _{цт ef}	5,100 CM				
			HTML	Закрыть	Спра	вка

Рисунок 1.2.8 – Результаты расчёта. *Характеристики эффективного сечения при изгибе* (стенка сжата)

1.2.2. Вычисление геометрических характеристик эффективного сечения Собразного профиля при сжатии в соответствии с ЕСЗ

Задание: В программе CFSteel выполнить расчёт геометрических характеристик полного и эффективного сечения С-образного профиля из Примера Н [10]. Расчёт геометрических характеристик эффективного сечения выполнить в соответствии с EC3 [3,4].

Figure 1.2.9 - Cross section

Section dimensions (overall) Figure 1.2.9: h = 102 mm, t = 2 mm, b = 120 mm, c = 26 mm, r = 10 mm (internal).

Material: $E = 210000 \text{ N/mm}^2$, $G = 80769 \text{ N/mm}^2$, v = 0,3, $f_y = 355 \text{ N/mm}^2$, partial factor $\gamma_{M0} = 1,0$. Thickness and tolerances (clause 3.2.4(1) [4]):

 $0,45 mm \le t_{cor} \le 15 mm$ $t = t_{cor} = 2 mm$ – conditions are complied. Influence of rounded corners (clause 5.1 [4]): $r/t = 10/2 = 5 \le 5$ $r/min(b_p, h_w) = 10/100 = 0, 1 \le 0, 1$

The influence of rounded corners on cross-section resistance may be neglected. For cross section properties the influence of rounded corners should always be taken into account.

Geometrical proportions (clause 5.2 [4]):

 $b/t = 120/2 = 60 \le 60$ $c/t = 26/2 = 13 \le 50$ $h/t = 102/2 = 51 \le 500$ - conditions are complied. $0,2 \le c/b \le 0,6$ c/b = 26/120 = 0,22The lips should be taken into account.

Description	Symbol	Unit	Value [10]	Value	Discrep
Description	Symbol	Oint	value [10]	CFSteel	ancy,%
Area of section	A_g	cm ²	7,34	7,34	0
Distance from center line of the web to centroid	Уs	mm	50,96	50,96	0
Distance from lip to centroid	y_s'	mm	67,04	67,04	0
Moment of inertia	I_{y}	cm^4	139,10	139,16	0,04
Moment of inertia	I_z	cm^4	140,45	140,53	0,06
Section modulus	$W_{z \ lip}$	cm ³	20,64	20,66	0,01
Radius of gyration	i_y	mm	43,53	43,54	0,02
	i_z	mm	43,74	43,75	0,02
Distance from shear centre to centroid	y_0	mm	115,31	115,73	0,4
Torsional constant (sharp corners)	I_t	cm^4	0,103	0,103	0
Warping constant (sharp corners)	I_w	cm^{6}	4728,07	4728,07	0

Table 1.2.16 –	Gross-section	properties	(round	corners)
----------------	---------------	------------	--------	----------

Effective area A_{eff} of the cross-section due to uniform compression $\sigma_{comEd} = f_y/\gamma_{M0} = f_{yb} = const.$

Figure 1.2.10 - Stress distribution (+ compression)

Table 1.2.17	- Effective	area of the	compression	web
--------------	-------------	-------------	-------------	-----

Description	Symbol	Unit	Clause	Value	Value	Discrepa
Description	Symbol	Oint	Clause	[10]	CFSteel	ncy,%
Plate slenderness	$\overline{\lambda_p}$		4.4(2) [22]	1,012	1,012	0
Reduction factor	ρ		4.4(2) [22]	0,773	0.773	0
Effective height	$h_{e\!f\!f}$	mm	tab. 4.1[22]	72,3	72,3	0
	h_{e1}	mm		36,15	36,19	0,1
	h_{e2c}	mm		39,37	39,41	0,1

Effective area of the compression flange with an edge stiffener

Step 1: Effective cross-section for spring stiffness of the stiffener $K=\infty$ based on the maximum compressive stress $\sigma_{com,Ed} = f_{yb} / \gamma_{M0} = f_{yb} = const$

Description	Symbol	Unit	Clause	Value [10]	Value Value [10] CFSteel					
Flange (internal compression element)										
Plate slenderness	$\overline{\lambda_p}$		4.4(2) [22]	1,206	1,206	0				

Сечение									
Reduction factor Effective widths	$egin{array}{c} ho \ b_{e\!f\!f} \ b_{el} \ b_{e2c} \end{array}$	mm mm mm	4.4(2) [22] tab. 4.1[22]	0,678 75,6 37,8 41,02	0,678 75,6 37,8 41,02	0 0 0 0			
	Lip (Outs	tand compre	ession element)		•	•			
Buckling factor	kσ	_		0,5	0,5	0			
Plate slenderness	$\overline{\lambda_p}$		4.4(2) [22]	0,666	0,666	0			
Reduction factor	ρ		4.4(2) [22]	1	1	0			
Effective width	c_{eff}	mm	tab. 4.1[22]	21,78	21,78	0			

Step 2: Reduced strength for effective area of stiffener from Step 1 due to distortional buckling

Description	Symbol	Unit	Clausa	Value	Value	Discrepa
Description	Symbol	Unit	Clause	[10]	CFSteel	ncy,%
Effective cross-s	sectional pro	perties of the	e edge stiffener	r (clause 5.5.	.3.2 [4])	
Effective area	A_S	mm^2		122,6	122,6	0
Distance between the midline of	e_S	mm		5,23	5,24	0,2
the flange and axis of stiffener						
Distance between the midline of	b_1	mm		104,14	104,13	0,01
the web and axis of stiffener						
Effective moment of inertia	I_S	mm^4		6962	7134	2,4
Spring stiffn	ess of the eff	ective edge	stiffener (claus	se 5.5.3.1(5)	[4])	
Spring stiffness	K	N/mm ²		0,167	0,167	0
Elastic critical buckling stress of	$\sigma_{cr,s}$	N/mm ²	5.5.3.2(7)	254,90	258,39	1,4
the effective edge stiffener	,					
Slenderness ratio	$\overline{\lambda_d}$		5.5.3.2(11)	1,180	1,172	0,7
Reduction factor	χd			0,617	0,622	0,9

Step3: Iteration to refine the value of the reduction factor for buckling of the stiffener (clause 5.5.3.2). Repeat *Step1* by calculating the effective widths with a reduced compressive stress due to distortional buckling of the edge stiffener from previous iteration based on the reduced slenderness ratio of the edge stiffener

 $\bar{\lambda}_{\rm p,red} = \bar{\lambda} p \sqrt{\chi_d}$.

Next, repeat Stet 2 to calculate a new reduction factor for the stiffener, continuing until

 $\chi_{dn} \approx \chi_{dn-1}$. The iteration is summarized in Table 1.2.18. There are 2 iterations in [10]. CFSteel has 3 iterations. It depends on precession of calculations.

Table 1.2.18	 Iteration to 	o calculate th	ne reduced	effective an	rea of the edge	stiffener
					0	

	In			Initial		first iteratio	n	S	econd iterat	tion	third
	Doromotor		Unit	colculat	[10]	CFSteel	Discre	[10]	CFSteel	Discre	iteration
	i aranneter		Unit	ion			pancy,			pancy,	(CFSteel
				IOII			%			%	only)
Edge	Reduction	$X_{d,n-1}$		1,0	0,617	0,623	1,0	0,595	0,600	0,8	0,598
stiffener	factor										
Flange	Plate	$\bar{\lambda}_{\mathrm{p}}$		1,206	1,206	1,206	0	1,206	1,206	0	1,206
Strain	slendernes										
ratio $\psi = 1$	S										
Buckling	Reduced	$\bar{\lambda}_{\rm p \ red}$			0,947	0,952	0,5	0,931	0,934	0,3	0,933
value	plate										
$k_{\sigma}=4$	slendernes										
	s										
	Reduction	ρ		0,678	0,811	0,808	0,4	0,820	0,818	0,2	0,819
	factor										
	Effective	b_{e2c}	mm	41,02	48,46	48,28	0,4	48,96	48,85	0,2	48,90
	width										
Lip	Plate	$\bar{\lambda}_{\rm p}$		0,666	0,666	0,666	0	0,666	0,666	0	0,666
Strain	slendernes	r									
ratio $\psi = 1$	S										
Buckling	Reduced	$\bar{\lambda}_{\rm p \ red}$			0,523	0,525	0,4	0,514	0,516	0,4	0,515

value $k_{\sigma}=0,5$	plate slendernes										
	Reduction factor	ρ		1,0	1,0	1,0	0	1,0	1,0	0	1,0
	Effective width	C _{effc}	mm	25,00	25,00	25,00	0	25,00	25,00	0	25,00
Edge stiffener	Effective area	A_s	mm ²	122,60	137,48	137,12	0,3	138,48	138,28	0,1	138,36
	Distance	b_1	mm	104,14	100,80	100,87	0,07	100,57	100,61	0,04	100,59
	Moment of inertia	Is	mm4	6962,00	7330,00	7495,37	2,2	7352,0	7520,93	2,3	7522,80
	Spring stiffness	K ₁	N/mm ²	0,167	0,181	0,179	1,1	0,182	0,181	0,6	0,181
	Critical buckling stress	$\sigma_{cr,s}$	N/mm ²	254,90	242,82	245,26	1,0	242,17	244,32	0,9	244,25
	Reduction factor	X _{d,n}		0,617	0,596	0,600	0,7	0,595	0,598	0,5	0,598
	Reduced effective area	A _{s,red}	mm ²	75,60	81,912	-	-	82,345	-	-	82,795

Section dimensions of the reduced effective edge stiffener (Result of iteration) presented in Table 1.2.19.

Table 1.2.19 - Section dimensions

Element	Parameter	Unit	Value [10]	Value CFSteel	Discrepancy,%
Flange	$b_{el,c}$	mm	41,02	41,03	0,02
	$b_{e2,c}$	mm	48,96	48,90	0,1
Web	$h_{e1,c} = h_{e2,c}$	mm	39,37	39,41	0,1
Lip	$C_{eff,c}$	mm	25,00	25,00	0
Edge stiffener	t _{red}	mm	1,190	1,197	0,6

Figure 1.2.11 – Effective cross-section – compression (*the values in parentheses in accordance with CFSteel*)

Description	Course has 1	I.I.::4	Value [10]	Value	Discrepa
Description	Symbol	Unit	value [10]	CFSteel	ncy,%
Area of section	A_{eff}	cm ²	4,67	4,68	0,2
Distance from web to centroid	<i>YSeff</i>	mm	42,72	42,82	0,2
Moment of inertia	I _{veff}	cm^4	87,24	87,46	0,2
Moment of inertia	I_{zeff}	cm^4	94,80	95,21	0,4
Distance of centroids (gross section – effective cross-section)	e_N	mm	8,24	8,15	1,1

Table 1.2.20 – Effective cross-section properties

Effective section modulus W_{eff} of the cross-section in bending about the z-z axis

Figure 1.2 12 - Stress distribution (bending)

The web is in tension, so fully effective.

Effective area of the flange in bending with an edge stiffener in compression

Step 1: Effective cross-section for spring stiffness of the stiffener $K=\infty$ based on the maximum compressive stress $\sigma_{com,Ed} = f_{yb} / \gamma_{M0} = f_{yb} = const$

Description	Symbol	Unit	Clause	Value	Value	Discrepa
· · · · · ·				[10]	CFSteel	ncy,%
	Flange (intern	al compressi	ion element)			
Stress ratio	Ψ			-0,748	-0,748	0
Buckling factor	k_{σ}		tab.4.1	18	18	0
			[21]			
Plate slenderness	$\overline{\lambda_n}$		4.4(2)	0,569	0,566	0,5
	p		[21]			
Effective widths	b_{eff}	mm	tab.	63,82	63,81	0
	-33		4.1[21]			
	b_{el}	mm		25,53	25,52	0
	b_{e2c}	mm		38,29	38,29	0

Step 2: Reduced strength for effective area of stiffener from Step 1 due to distortional buckling

Description	Symbol	Unit	Clause	Value	Value	Discrepa
Description	Symbol	Unit	Clause	[10]	CFSteel	ncy,%
Effective cross-see	ctional propert	ies of the ed	ge stiffener (clause 5.5.3.	.2 [4])	
Effective area	A_S	mm^2		98,06	98,05	0,01
Distance between the midline of	b_1	mm		109,40	109,40	0
the web and axis of stiffener						
Effective moment of inertia	I_S	mm^4		6113	6284	2,8
Spring stiffnes	s of the effecti	ve edge stiff	ener (clause	5.5.3.1(5) [4	4])	
Spring stiffness	Κ	N/mm ²		0,149	0,149	0
Elastic critical buckling stress of	$\sigma_{cr,s}$	N/mm ²	5.5.3.2(7	282,08	285,71	1,3
the effective edge stiffener	,)			
Slenderness ratio	$\overline{\lambda_d}$		5.5.3.2(1	1,122	1,107	1,4
	u		1)			
Reduction factor	χ _d			0,659	0,670	1,7

Step3: Iteration to refine the value of the reduction factor for buckling of the stiffener (clause 5.5.3.2). Repeat *Step1* by calculating the effective widths with a reduced compressive stress due to distortional buckling of the edge stiffener from previous iteration based on the reduced slenderness ratio of the edge stiffener

$$\bar{\lambda}_{\rm p,red} = \bar{\lambda} p \sqrt{\chi_d}$$
.

Next, repeat *Stet 2* to calculate a new reduction factor for the stiffener, continuing until $\chi_{dn} \approx \chi_{dn-1}$. Because flanges and lips are already fully effective, the iteration is redundant.

Edge stiffener: $A_{s,red} = 74,1 \text{ mm}^2$ [10]

Edge stiffener: $A_{s,red} = 75,3 \text{ mm}^2$ [CFSteel] (1,6%). $t_{red} = 1,51 \text{ mm}$ [10]

 $t_{red} = 1,54 \text{ mm} [CFSteel] (2\%).$

Figure 1.2.13 – Effective cross-section – bending (*the values in parentheses in accordance with CFSteel*)

Table 1.2.21 – Section properties of effective cross-section

Description	Symbol	Unit	Value [10]	Value	Discrep
Description	Symbol	Unit	value [10]	CFSteel	ancy,%
Area of section	A_{eff}	cm^2	6,86	6,90	0,6
Distance from the web to centroid	<i>YSeff</i>	mm	46,87	48,20	2,8
Moment of inertia	I_{veff}	cm^4	129,73	130,48	0,6
Moment of inertia	I_{zeff}	cm^4	122,49	123,98	1,2
Section modulus	$W_{zefflip}$	cm ³	17,04	17,32	1,6
Section modulus	$W_{zeffweb}$	cm ³	25,59	25,72	0,5

1.2.3. Вычисление геометрических характеристик эффективного сечения Собразного профиля

Задание: В программе CFSteel выполнить расчёт геометрических характеристик эффективного сечения из документа: Heinisuo, M., Kukkonen, J. Design of Cold-Formed Members Following New EN 1993-1-3 / Tampere University of Technology, - 2005, - 21 p [23].

Figure 1.2.14 - Cross section

Section dimensions (overall): $h = 97,3 \text{ mm}, t = 1,48 \text{ mm}, b_{fl} = b_{f2} = 37 \text{ mm}, c = 12,5 \text{ mm}, r = 0,85 \text{ mm}$ (internal).

Material: $E = 210000 \text{ N/mm}^2$, $G = 80769 \text{ N/mm}^2$, $v = 0, 3, f_y = 505 \text{ N/mm}^2$, partial factor $\gamma_{M0} = 1, 0$.

Table 1.2.22 – Gross-section pr	operties (round	corners)
---------------------------------	-----------------	----------

Description	Symbol	Unit	Value [23]	Value CFSteel	Discrep ancy,%
Area of section	A_g	cm^2	2,7771	2,7772	0
Distance from center line of the web to centroid	Уs	mm	-	10,917	-
Moment of inertia	I_y	cm^4	40,283	40,237	0,1
Moment of inertia	I_z	cm^4	5,257	5,247	0,2
Section modulus	$W_{z \ lip}$	cm ³	-	2,071	-
Radius of gyration	i_{y}	cm	-	3,806	-
	i_z	cm	-	1,375	-
Distance from shear centre to centroid	y_0	mm	-	28,08	-
Torsional constant (sharp corners)	I_t	cm^4	0,0202	0,0206	2,0
Warping constant (sharp corners)	I_w	cm^{6}	104,77	107,77	2,9

 $\sigma_{comEd} = f_y / \gamma_{M0} = f_{yb} = \text{const.}$

Table	1.2.23 -	Parameters	of effective	cross-section
1 auto	1.2.23	1 arameters	of effective	cross-section

Description	Symbol	Unit	Clause EN 1993-1-3 EN 1993-1-5	Value [23]	Value CFSteel	Discrepa ncy,%
Relative slenderness: Lip	$\overline{\lambda_p}$		4.4(2)	0,562	0,557	0,9
Relative slenderness: Flange	$\frac{1}{\lambda_p}$		4.4(2)	0,609	0,603	1,0
Relative slenderness: Web	$\frac{1}{\lambda_p}$		4.4(2)	1,671	1,653	1,1
Reduction factor: Lip	ρ		4.4(2)	1	1	0
Reduction factor: Flange	ρ		4.4(2)	1	1	0
Reduction factor: Web	ρ		4.4(2)	0,52	0,52	0

Table 1.2.24 - Reduced parameters for effective area of stiffener from due to distortional	buckling*
--	-----------

Description	Symbol	Unit	Clause	Value [23]	Value CFSteel (Initial calculatio n)	Discrep ancy,%	Value CFSteel (1 iteration)		
Effective cross-section	nal propert	ies of the e	dge stiffener	c (clause 5.	5.3.2 [4])				
Effective area	A_S	mm^2		42,66	42,68	0,05	42,68		
Distance between the midline of	b_1	mm		30,04	30,04	0	30,04		
the web and axis of stiffener									
Effective moment of inertia	I_S	mm^4		560,24	560,18	0,01	560,18		
Spring stiffness of the effective edge stiffener (clause 5.5.3.1(5) [4])									
Spring stiffness	Κ	N/mm ²		1,193	1,192	0	1,192		
Elastic critical buckling stress of	$\sigma_{cr,s}$	N/mm ²	5.5.3.2(7)	555	555	0	555		

		Сеч	ение				
the effective edge stiffener							
Slenderness ratio	$\overline{\lambda_d}$		5.5.3.2(11)	0,963	0,954	0,9	0,954
Reduction factor	χd			0,774	0,780	0,8	0,780
Reduced thickness	t _{red}	mm		1,15	1,15	0	1,15

* It is no iterations in [23] to refine effective parameters of edge stiffener

Table 1.2.25 – Section prop	erties of effective	cross-section
-----------------------------	---------------------	---------------

Description	Symbol	Unit	Value [23]	Value	Discrep
Description	bymeer	ome	(unue [23]	CFSteel	ancy,%
Area of section	A_{eff}	cm ²	1,9024	1,9216	1,0
Distance from center line of the web to centroid	\mathcal{Y}_{Seff}	mm	-	12,846	-
Moment of inertia	I_{veff}	cm^4	-	35,20	-
Moment of inertia	I_{zeff}	cm^4	-	3,63	-
Section modulus	$W_{zefflip}$	cm ³	-	1,56	-
Section modulus	$W_{zeffweb}$	cm ³	25,59	2,67	-
Radius of gyration	i_{veff}	cm	-	4,28	-
	i_{zeff}	cm	-	1,37	-
Distance of centroids (gross section – effective cross-section)	e_N	mm	-	1,929	-

1.2.4. Вычисление геометрических характеристик эффективного сечения Собразного профиля при изгибе относительно оси наибольшей жёсткости в соответствии с ЕСЗ

Задание: В программе CFSteel выполнить расчёт геометрических характеристик эффективного сечения из документа: SX022a-EN-EU Calculation of effective section properties for a cold-formed lipped channel section in bending: Calculation sheet / Access steel, 2005, 8 p. [24] Section dimensions (overall): h = 200 mm, $t_{nom} = 2 \text{ mm}$, $b_{f1} = 66 \text{ mm}$, $b_{f2} = 74 \text{ mm}$, c = 20,8 mm, r = 3 mm (internal).

Material: $E = 210000 \text{ N/mm}^2$, $G = 80769 \text{ N/mm}^2$, v = 0,3, $f_v = 350 \text{ N/mm}^2$, partial factor $\gamma_{M0} = 1,0$.

Figure 1.2.15 - Cross section

Gross cross-sectional area [24] $A = 7,32 \text{ cm}^2$. Gross cross-sectional area according to CFSteel $A = 7,20 \text{ cm}^2$. Discrepancy 1,7%. It should be noted, that in [24] properties of gross and effective sections are calculated with sharp corners. While in CFSteel properties are calculated using rounded corners 'as is' without simplifications.

The general (iterative) procedure is applied to calculate the effective properties of the compressed flange and the lip (plane element with edge stiffener). The calculation should be carried out in three steps:

Step1: Obtain an initial cross-section for the stiffener using effective widths of the flange determined by assuming that the compressed flange is doubly supported, the stiffener gives full

restraint ($K=\infty$) and that design strength is not reduced ($\sigma_{com,Ed} = f_{yb} / \gamma_{M0}$). The calculations are summarized in Table 1.2.26.

Description	Symbol	Unit	Clause	Value [24]	Value CESteel	Discrepa	
Ef	fective width	of the cor	opressed flang	Ê	CI Steel	ncy,70	
Relative slenderness	$\frac{1}{\lambda_{n}}$		4.4 [22]	0,789*	0,763*	3,4	
Width reduction factor	0			0.914	0.933	2.0	
Effective widths	b_{eff}	mm		65,8	65,0	1,2	
	b_{eI}	mm		32,9	32,5	1,2	
	b_{e2}	mm		32,9	32,5	1,2	
Effective width of the edge fold							
Buckling factor	kσ			0,5	0,5	0	
Relative slenderness	$\overline{\lambda_p}$		4.4 [22]	$0,\!614^{*}$	$0,577^*$	6,4	
Reduction factor	ρ			1	1	0	
Effective width	c_{eff}	mm		19,8	18,6	6,3	

Table 1.2.26 - Calculations of stiffener parameters

* Dimensions of flat parts of a section in [24] is taken as the distance between midline intersection points. While in CFSteel b_p , c_p and h_p are taken as notional widths of plane elements allowin for radii according to Figure 5.3 [4]

Step2: Use the initial effective cross-section of the stiffener to determine the reduction factor, allowing for the effects of the continuous spring restraint. The calculations are summarized in Table 1.2.27.

Table 1.2.27 - Calculation of reduction factor

Description	Symbol	Unit	Clause	Value [24]	Value CFSteel	Discrep ancy,%	
Effective cross-sectional properties of the edge stiffener (clause 5.5.3.2 [4])							
Effective area	A_S	mm^2	-	103,3	101,4	1,9	
Distance between the midline of the	b_1	mm		61,73	61,03	1,1	
web and axis of stiffener							
Spring stiffness	of the effecti	ve edge sti	iffener (clause	5.5.3.1(5) [4]))		
Spring stiffness	K	N/mm ²		0,439	0,450	2,5	
Elastic critical buckling stress of	$\sigma_{cr,s}$	N/mm ²	5.5.3.2(7)	355,78	364,89	2,5	
the effective edge stiffener							
Slenderness ratio	$\overline{\lambda_d}$		5.5.3.2(11)	0,992	0,979	1,3	
Reduction factor	χd			0,753	0,762	1,2	

Step3: As the reduction factor for buckling of the stiffener is $\chi_d < 1$, iterative to refine the value of the reduction factor for buckling of the stiffener. The iterations are carried out based on modified values of ρ obtained using $\sigma_{com,Ed,I} = \chi_d f_{yb} / \gamma_{M0}$ and

$$\overline{\lambda}_{p,red} = \overline{\lambda}_p \sqrt{\chi_d}$$

The iterations stops when the reduction factor χ converges. Final values of last iteration are shown in Table 1.2.28.

Table 1.	.2.28 -	Final	values
----------	---------	-------	--------

Description	Symbol	Unit	Clause	Value [24]	Value CFSteel	Discrep ancy,%
Effective widths	b_1	mm		32,9	32,5	1,2
	b_{e2}	mm		35,9	34,8	3,1
	c_{eff}	mm		19,8 [*]	18,6*	6,4
Reduction factor	χd			0,737	0,756	2,6
Reduced thickness	t_{red}	mm	5.5.3.2(12)	1,44	1,48	2,8

Effective section properties of the web (Table 1.2.29)

Description	Symbol	Unit	Clause	Value [24]	Value CFSteel	Discrep ancy,%
Position of the neutral axis with regard to the flange (centerline) in compression	h_c	mm		101,6	101,1	0,5
Stress ratio	Ψ		4.4 [22]	-0.949	-0,959	1,0
Buckling factor	k_{σ}			22,58	22,84	1,2
Relative slenderness	$\overline{\lambda_d}$			0,914	0,897	1,9
Reduction factor	ρ			0,959	0,975	1,7
Effective width of the zone in compression of the web	$\dot{h}_{e\!f\!f}$			97,5	97,4	0,1
near the flange in compression	h_{e1}			39,0	39,0	0
near the neutral axis	h_{e2}			58,5	58,5	0

Table 1.2.29 - Effective section properties of the web

Properties of the effective section (Table 1.2.30)

Table 1.2.30 - Effective section properties

Description	Symbol	Unit	Value [24]	Value CFSteel	Discrepa ncy,%
Cross-section area	A_{eff}	cm^2	6,892	6,835	0,8
Position of the neutral axis with regard to the fiange in compression	Z _{c eff}	mm	102,3	102,4	0,1
Position of the neutral axis with regard to the fiange in tension	$Z_{t eff}$	mm	95,7	97,6	2,0
Second moment of area	I_{yeff}	cm^4	414,0	406,5	1,8
Section modulus	$W_{yeff c}$	cm ³	40,46	39,70	1,9
	$W_{veff t}$	cm ³	43,26	41,66	3,8

1.2.5. Вычисление геометрических характеристик эффективного сечения Швеллера при сжатии в соответствии с ЕСЗ

Задание: В программе CFSteel выполнить расчёт геометрических характеристик полного и эффективного сечения Швеллера из Примера G Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123, 2008.- 235 р [10].

Figure 1.2.16 - Cross section

Section dimensions (overall): h = 104 mm, t = 4 mm, b = 77 mm, r = 4 mm (internal). Material: $E = 210000 \text{ N/mm}^2$, $G = 80769 \text{ N/mm}^2$, v = 0.3, $f_v = 355 \text{ N/mm}^2$, partial factor $\gamma_{M0} = 1.0$.

Thickness and tolerances (clause 3.2.4(1) [4]):

 $0,45 \text{ } mm \le t_{cor} \le 15 \text{ } mm; \quad t = t_{cor} = 4 \text{ } mm - \text{conditions are complied.}$ Influence of rounded corners (clause 5.1 [4]):

> $r/t = 4/4 = 1 \le 5$ $r/min(b_p, h_w) = 4/75 = 0,053 \le 0,1$

The influence of rounded corners on cross-section resistance may be neglected. For cross section properties the influence of rounded corners should always be taken into account.

Geometrical proportions (clause 5.2 [4]):

 $b/t = 77/4 = 19,25 \le 60;$ $h/t = 104/4 = 26 \le 500$ - conditions are complied.

Table 1.2.31 - Gross-section properties (re	ound corners)
---	---------------

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrep ancy.%
Area of section	A_{ϱ}	cm ²	9,79	9,79	0
Distance from center line of the web to centroid	ys	mm	23	22,99	0
Moment of inertia	I_{v}	cm^4	177,97	178,06	0,09
Moment of inertia	I_z	cm^4	60,75	60,77	0,03
Section modulus	W_{zfree}	cm ³	11,68	11,68	0
	$W_{z,web}$	cm ³	24,30	24,31	0,04
Radius of gyration	i_{y}	mm	4,46	4,26	0
	i_z	mm	2,49	2,49	0
Distance from shear centre to centroid	y _o	mm	54,36	53,68	1,3
Torsional constant (sharp corners)	I_t	cm^4	0,533	0,533	0
Warping constant (sharp corners)	I_w	cm^6	1086,65	1086,65	0

Effective area A_{eff} *of the cross-section due to uniform compression (according to clause5.5* [4])

Figure 1.2.17 - Stress distribution (+ compression)

 $\sigma_{comEd} = f_y / \gamma_{M0} = f_{yb} = const.$ Plate slenderness of the web $\overline{\lambda_p} = 0,522 < 0,673$ – the web is fully effective.

Effective area of the compression flange

Table 1.2.32 - Effective parameters of compression flange

Description	Sumbol	Symbol	L Unit Clause	Symphol Unit	Symbol Unit Clause	Value	Value	Discrep
Description	Symbol	Unit Clause	[10]	CFSteel	ancy,%			
Buckling factor	k_{σ}		Tab.4.2 [22]	0,43	0,43	0		
Plate slenderness	$\overline{\lambda_p}$		4.4(2) [22]	1,208	1,208	0		
Reduction factor	ρ			0,699	0,699	0		
Effective width	b_{eff}	mm	Tab.4.2 [22]	51,19	51,21	0,04		

Figure 1.2.18 – Effective cross-section (compression) (*the values in parentheses in accordance with CFSteel*)

Table 1.2.33 – Section pr	roperties of effective	cross-section
---------------------------	------------------------	---------------

Description	Symbol	Unit Value [10]		Value CFSteel	Discrepa ncy,%
Area of section	A_{eff}	cm ²	8,03	8,03	0
Distance from web to centroid	<i>YSeff</i>	mm	14,00	14,00	0
Moment of inertia	I_{yeff}	cm^4	133,84	133,96	0,09
Moment of inertia	I_{zeff}	cm^4	23,91	23,94	0,1
Distance of centroids (gross section – effective cross-section)	e_N	mm	9,00	9,00	0

Effective section modulus W_{eff} of the cross-section in bending about the z-z axis with maximum compressive stress at the free edge (clause 5.5 [4])

Figure 1.2.19 - Stress distribution (bending)

The web is fully effective (tension). Table 1.2.34 - Effective parameters of the flanges

Description	Symbol	Unit	Clause	Value [10]	Value CFSteel	Discrepancy, %
Buckling factor	k_{σ}		Tab.4.2 [22]	0,668	0,667	0,1
Relative slenderness	$\overline{\lambda_p}$		4.4 [22]	0,969	0,969	0
Reduction factor	ρ			0,832	0,832	0
Effective width	\dot{b}_{eff}	mm	Tab.4.2 [22]	43,25	43,25	0

Table 1.2.35 - Iteration to calculate the effective cross-section in bending*

				Initial	first iteration			fourth iteration			fifth
Parameter			Unit	calculatio	[10]	CFSteel	Discre	[10]	CFSteel	Discre	iteration
		Unit	n			pancy,			pancy,	(CFSteel	
						%			%	only)	
Strain	based on the										
ratio	effective cross-	ψ		-0,409	-0,375	-0,380	1,3	-0,342	-0,307	11	-0,304
	section										
Flange	Buckling factor	k		0,668	0,659	0,660	0,15	0,650	0,643	1	0,640
	Plate	ī		0.060	0.959	0.858	0	0.764	0.755	1.2	0.752
	slenderness	λ _p		0,909	0,838	0,858	0	0,704	0,755	1,2	0,732
	Reduction			0.832	0.010	0.010	0	0.097	0.004	0.7	0.008
	factor	р		0,832	0,910	0,910	0	0,907	0,994	0,7	0,998
	Effective width	b_{eff}	mm	43,25	42,65	42,51	0,2	41,9	42,56	1,6	42,56

* In [10] calculations cancelled after 5 steps. In CFSteel target accuracy (0,5%) was reached after 6 steps.
Сечение

Figure 1.2.20 – Effective cross-section (bending) (*the values in parentheses in accordance with CFSteel*

Table 1.2.21 – Sectior	properties	of effective cr	oss-section	(bending)
------------------------	------------	-----------------	-------------	-----------

Description	Symbol	Unit	Value [10]	Value	Discrepa
•	-			CFSteel	ncy,%
Area of section	A_{eff}	cm^2	8,45	8,37	1,0
Distance from web to centroid	\mathcal{Y}_{Seff}	mm	16,06	15,68	2,4
Moment of inertia	I_{veff}	cm^4	144,31	142,55	1,2
Moment of inertia	I_{zeff}	cm^4	30,79	29,50	4,3
Section modulus	$W_{effz,free}$	cm ³	7,31	7,10	3,0
Section modulus	$W_{effz,web}$	cm ³	17,05	16,69	2,2

Effective area A_{eff} of the cross-section due to uniform compression (according to Annex D [4])

Effective area of the compression flange

Table 1.2.36 - Effective parameters of compression flange

Description	Symbol	Unit	Clause	Value	Value	Discrepa
Description	Symbol	Oint	Cluuse	[10]	CFSteel	ncy,%
Buckling factor	k_{σ}		Tab.4.2 [22]	0,43	0,425	1,2
Plate slenderness	$\overline{\lambda_p}$		4.4(2) [22]	1,208	1,215	0,6
Reduction factor	ρ			0,699	0,696	0,4
Effective width	b_{e0}	mm	Tab.D.1	30,76	30,76	0
Effective thickness	t_{eff}	mm		1,893	1,871	1,1

Figure 1.2.21 – Effective cross-section – compression (*the values in parentheses in accordance with CFSteel*

T 11 1007	a		C CC /*	. •	/ · `
Table 1 $7 + 1$	- Nection	nronerfies	of effective	croce_cection	compression)
1 auto 1.2.37	- Section	properties		cross-section	(compression)
		1 1			

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrepa ncy,%
Area of section	A_{eff}	cm ²	8,00	7,89	0,3
Distance from web to centroid	<i>YSeff</i>	mm	16,11	16,02	0,6

	Сечение				
Moment of inertia	I_{veff}	cm^4	133,11	132,79	0,2
Moment of inertia	I_{zeff}	cm^4	37,29	37,05	0,6
Distance of centroids (gross section – effective cross-section)	e_N	mm	6,89	6,97	1,2

Effective section modulus W_{eff} of the cross-section in bending about the z-z axis with maximum compressive stress at the free edge (to Annex D [4])

The web is fully effective (tension).

Table 1.2.38 -	Section pro	perties of effective	cross-section	(bending)
----------------	-------------	----------------------	---------------	-----------

Description	Symbol	Unit	Value [10]	Value	Discrepa
Description	Symbol	Unit	value [10]	CFSteel	ncy,%
Area of section	A_{eff}	cm^2	9,13	9,20	0,8
Distance from web to centroid	\mathcal{Y}_{Seff}	mm	20,40	20,64	3,2
Moment of inertia	I _{veff}	cm^4	161,48	163,37	1,2
Moment of inertia	I_{zeff}	cm^4	50,96	51,82	1,7
Section modulus	$W_{effz,free}$	cm ³	9,33	9,53	2,1
Section modulus	$W_{effz,web}$	cm ³	22,76	22,89	0,6

Сечение

В Таблице 1.2.39 представлено сравнение эффективных геометрических характеристик С-образных сечений, приведённых в Техническом Руководстве компании Руукки [28], с результатами расчёта в программе CFSteel. В [28] не указан радиус закругления в местах гиба. В CFSteel принято: радиус закругления r = 3 мм, расчётная толщина $t = t_{nom} - t_{coat}, t_{coat} = 0,04$ мм для класса цинкования 275 г/м². Геометрические характеристики в программе вычисляются с учётом закругления без упрощений.

Cross-	Height	Thic	Width	Width	Fold	Source					
section	h	kness	of	of	С		Cross-	Moment of	Section	Moment of	Section
		$t_{ m nom}$	wide	narrow			section	inertia (Top	modulus (Top	inertia	modulus
			flange,	flange,			area,	flange	flange	(Bottom flange	(Bottom flange
			A	В			A _{eff}	compressed),	compressed),	compressed),	compressed),
								I _{yeff}	Wyeff	I _{yeff}	Wyeff
	mm	mm	mm	mm	mm		cm ²	cm ⁴	cm ³	cm ⁴	cm ³
						Ruukki	1,22	28,624	5,62	29,432	5,567
		1	45	39	18	CFSteel	1,23	28,954	5,54	29,731	5,519
						%	0,8	1,2	1,4	1,0	0,9
						Ruukki	1,72	36,812	7,321	37,566	7,365
		1,2	45	39	18	CFSteel	1,71	36,439	7,271	37,372	7,271
C100	100					%	0,6	1,0	0,7	0,5	1,3
C100	100					Ruukki	2,42	47,262	9,244	47,262	9,244
		1,5	46	40	18	CFSteel	2,41	46,882	9,215	47,031	9,138
						%	0,4	0,8	0,3	0,5	1,1
						Ruukki	3.64	63,289	12.319	63,289	12.319
		2	47	41	18	CFSteel	3.62	62.6	12.182	62.6	12.182
	2 47 41				%	0.5	1.1	1.1	1.1	1.1	
						Ruukki	1 22	42 646	6 768	43 793	6.725
		1	45	30	18	CESteel	1,22	12,010	6,751	13,193	6,725
		1	75	37	10		0.8	1.8	0,751	16	0,738
						70 Duuldii	1 71	56 246	0.274	57 202	0.227
		1.0	15	20	10	CESteel	1,/1	55.00	9,374	57,392	9,527
		1,2	45	39	18	CFSteel	1,/1	55,88	9,251	56,671	9,039
C120	120					%	0,0	0,8	1,3	1,3	3,1
						Ruukki	2,43	72,727	11,871	72,727	11,871
		1,5	46	40	18	CFSteel	2,41	71,997	11,844	72,244	11,696
						%	0,8	1,0	0,2	0,7	1,5
			47			Ruukki	3,67	97,403	15,834	97,403	15,834
		2		41	18	CFSteel	3,66	96,411	15,67	96,411	15,67
						%	0,3	1,0	1,0	1,0	1,0
						Ruukki	1,22	69,499	8,471	71,579	8,546
		1	45	39	18	CFSteel	1,22	71,138	8,583	72,734	8,578
						%	0,0	2,4	1,3	1,6	0,4
						Ruukki	1,72	92,084	11,923	94,238	11,891
		1,2	45	39	18	CFSteel	1,7	91,898	11,753	92,86	11,49
C150	150					%	1,2	0,2	1,4	1,5	3,4
C150	150					Ruukki	2,44	123,851	16,283	123,716	16,168
		1,5	46	40	18	CFSteel	2,41	122,234	16,168	121,875	15,691
						%	1,2	1,3	0,7	1,5	3,0
						Ruukki	3,74	166,423	21,756	166,423	21,756
		2	47	41	18	CFSteel	3,69	163,917	21,469	164,211	21,411
						%	1,3	1,5	1,3	1,3	1,6
						Ruukki	2.77	284.286	26.036	291.22	26.021
		1.5	70	62	26	CESteel	2.8	284,516	25.876	291.741	26,006
		1,0	70	02		%	11	0.1	06	0.2	01
						Ruukki	4 67	435 933	43 388	440 601	42 697
		2	71	63	26	CESteel	4,07	425 604	42 208	440,001	41,163
C200	200	2	/1	05	20		4,05	425,004	+2,270	420,793	+1,105
						% Duul-1-:	0,9	2,4	2,3	2,7	54756
		25	70	C1	24	CESt 1	0,30	540.249	52.506	542.021	52.075
		2,5	12	04	20	Croteel	0,47	540,266	33,396	545,031	52,875
				~~	0.5	%	1,4	3,6	2,1	3,1	5,4
1	1	3	73	65	26	Ruukki	8,56	673,275	65,63	673,275	65,63

Таблица 1.2.39 - С-образные профили. Сопоставление результатов, полученных в CFSteel, с данными, приведёнными в Техническом Руководстве компании Руукки [28]

Сечение

						CFSteel	8,43	650,427	64,105	653,234	63,953
						%	1,5	3,4	2,3	3,0	2,6
						Ruukki	2,75	460,126	32,61	470,892	32,688
		1,5	70	62	26	CFSteel	2,78	464,151	32,774	475,047	32,977
						%	1,1	0,9	0,5	0,9	0,9
						Ruukki	4,63	708,138	54,727	714,3	53,474
		2	71	63	26	CFSteel	4,59	696,837	53,422	703,017	52,163
C250	250					%	0,9	1,6	2,4	1,6	2,5
C230	230					Ruukki	6,55	943,088	74,282	942,613	73,423
		2,5	72	64	26	CFSteel	6,46	916,497	73,054	916,218	71,01
						%	1,4	2,8	1,7	2,8	3,3
						Ruukki	8,59	1142,055	89,356	1142,055	89,356
		3	73	65	26	CFSteel	8,48	1111,92	87,325	1111,92	87,325
						%	1,3	2,6	2,3	2,6	2,3
						Ruukki	2,63	704,848	38,607	718,788	38,779
		1,5	89	81	26	CFSteel	2,65	730,032	40,017	743,485	40,206
						%	0,8	3,6	3,7	3,4	3,7
				0 82		Ruukki	4,57	1105,971	65,738	1127,403	65,861
		2	90		26	CFSteel	4,6	1118,979	66,427	1139,234	66,598
C300	300					%	0,7	1,2	1,0	1,0	1,1
0.500	500			83		Ruukki	6,85	1533,544	97,143	1550,836	95,957
		2,5	91		26	CFSteel	6,81	1526,882	96,396	1542,642	95,34
						%	0,6	0,4	0,8	0,5	0,6
						Ruukki	9,19	1956,934	129,561	1956,195	125,446
		3	92	84	26	CFSteel	9,08	1924,439	126,773	1926,201	123,348
						%	1,2	1,7	2,2	1,5	1,7
						Ruukki	4,75	1587,383	79,851	1614,608	79,941
		2,0	90	82	30	CFSteel	4,77	1604,815	80,419	1631,677	80,643
						%	0,4	1,1	0,7	1,1	0,9
						Ruukki	7,09	2200,985	117,588	2221,387	116,154
C350	350	2,5	91	83	30	CFSteel	7,07	2214,245	115,399	2214,245	115,399
						%	0,3	0,6	1,9	0,3	0,6
						Ruukki	9,51	2807,307	156,384	2802,178	151,617
		3,0	92	84	30	CFSteel	9,42	2768,952	153,187	2767,652	149,204
						%	0,9	1,4	2,0	1,2	1,6

2. ЭЛЕМЕНТЫ

2.1. Растяжение

Задание 2.1.1. Выполнить расчёты несущей способности растянутых элементов, результаты испытаний которых представлены в работе [15], ручным способом и в программе CFSteel. Сравнить результаты, полученные ручным способом и полученные в программе по разным методикам, между собой, а также с экспериментальными данными.

Элементы выполнены из холодногнутых профилей с поперечным сечением в виде швеллера с номинальными размерами: 80x40x2,4 мм, 80x50x2,4 мм, 80x60x2,4 мм, 100x40x2,4 мм и 120x40x2,4 мм. Прикрепление элемента осуществляется к относительно толстой пластине с помощью болтов номинальным диаметром d = 12,7 мм, расположенных на стенке элемента в два ряда по её ширине. Рассмотрено три варианта расположения болтов вдоль усилия (Рисунок 2.1.1): два поперечных ряда болтов с шагом 40 мм (4 болта в соединении), два поперечных ряда болтов с шагом 80 мм (4 болта в соединении) и три ряда болтов с шагом 40 мм (6 болтов в соединении). Диаметр отверстий под болты $d_0=14,3 \text{ мм}$. Элементы выполнены из листовой оцинкованной стали с пределом текучести $f_y=328 \text{ МПа}$ и пределом прочности $f_u=447,77 \text{ МПа}$ ($f_u/f_y=1,365$). Механические характеристики получены по результатам испытаний стандартных образцов. В [15] указывается, что разрушение всех испытанных образцов происходило от разрыва по ослабленному отверстиями сечению в месте прикрепления. Характерный вид разрушения [15] представлен на Рисунке 2.1.2.

Рисунок 2.1.1 – Размеры испытанных в [15] образцов

Рисунок 2.1.2 – Характерный вид разрушения испытанных в [15] образцов

Расчёт: Ручным способом и в программе CFSteel произведён расчёт по нормам CП 260 [1], CП 16 [2], EC3 [4,5], AISI S100 [7], а также методикам, предложенным G.L. Kulak и E.Y. Wu (Кулак и Ву) [14], C.L. Pan (Пан) [15], L. H. Teh, B.P. Gilbert (Тех и Джильберт) [16].

Определялось нормативное значение несущей способности элементов по ослабленному отверстиями для болтов сечению в месте прикрепления, а также соответствующее расчётное значение. Для вычислений по СП 260 учтён коэффициент надёжности по материалу $\gamma_m=1,025$ (п.6.3 [1]), по СП 16 $\gamma_m=1,05$, по ЕСЗ частный коэффициент $\gamma_{M2}=1,25$, а по AISI S100 коэффициент сопротивления $\phi_t=0,65$, также как и по методикам Пана, Теха и Джильберта. В методике Кулака и Ву для определения расчётного значения ослабленная часть сечения домножается на коэффициент 0,9 и делится на частный коэффициент надёжности $\gamma_{M1}=1,25$; неослабленная часть сечения делится на $\gamma_{M0}=1,1$ как это делается, например, в индийских нормах IS:800-2007. Коэффициент условий работы элемента γ_c для норм СП принят 1,0.

Ниже приведён расчёт на разрушение по сечению нетто в месте присоединения для образца A40-BA-2 [15] сечением 120,82x40,26 мм. Количество болтов в соединении $n_b = 4$. Расстояние между поперечными рядами болтов 40 мм. В [15] не указано значение радиуса закругления. Примем r = 3 мм. В расчёт принята толщина стали $t = t_{nom} - t_{coat} = 2,4 - 0,04 = 2,36$ мм.

Радиус центральной линии закругления в месте гиба $r_{centerline} = r + t_{nom}/2 = 3+2, 4/2 = 4, 2 \text{ мм.}$

Длина дуги закругления $l_{centerline} = 1,57 r_{centerline} = 6,594$ мм. Площадь дуги $A_{round} = l_{centerline} r = 6,594 \cdot 2,36 = 15,56$ мм².

Плоская часть стенки $h_{flat} = h - 2(r + t_{nom}) = 120,82 - 2(3 + 2,4) = 110,02$ мм.

Плоская часть пояса $b_{flat} = b - (r + t_{nom}) = 40,26 - (3+2,4) = 34,86$ мм.

Площадь полного сечения $A = (h_{flat} + 2 b_{flat}) t + 2 A_{round} = (110,02 + 2.34,86) \cdot 2,36 + 2.15,56 = 455,306 мм^2$.

Площадь сечения нетто $A_n = A - 2 \cdot t \cdot d_0 = 455,306 - 2 \cdot 2,36 \cdot 14,3 = 387,81 \text{ мм}^2$.

Расчёт по СП 260:

Нормативное значение несущей способности элемента по неослабленному сечению $N_{gn} = A \cdot R_{yn} \cdot \gamma_c = 4,553 \cdot 32,8 \cdot 1 = 149,338 \kappa H$

Расчётное значение несущей способности элемента по неослабленному сечению

 $N_g = A \cdot R_y \cdot \gamma_c = 4,553 \cdot 32 \cdot 1 = 145,695 \ \kappa H$

Нормативное значение несущей способности по ослабленному отверстиями сечению в месте прикрепления

 $N_n = A_n \cdot R_{vn} \cdot \gamma_c \cdot \gamma_{ct} = 3,878 \cdot 32,8 \cdot 1 \cdot 1,1 = 139,918 \ \kappa H,$

где γ_{ct} – коэффициент условий работы при расчёте по сечению, ослабленному отверстиями для болтов (п.6 Табл.1 СП 16).

Расчётное значение несущей способности по ослабленному отверстиями сечению в месте прикрепления

 $N = A_n \cdot R_y \cdot \gamma_c \cdot \gamma_{ct} = 3,878 \cdot 32 \cdot 1 \cdot 1, 1 = 136,506 \text{ } \kappa H.$

Расчётное значение несущей способности элемента по смятию в контакте с болтом (п.10.1.1 [1])

 $N_{bp} = R_{bp} \cdot d_b \cdot \Sigma t \cdot \gamma_b \cdot \gamma_c \cdot n_b = 43,684 \cdot 1,12 \cdot 0,236 \cdot 0,9 \cdot 1 \cdot 4 = 41,568 \ \kappa H$

где $R_{bp} = f_u / \gamma_m = 43,684 \ \kappa H/cM^2$ (п.10.1.1 [1]); $d_b = 11,2 \ MM$ (внутренний диаметр резьбы (п.10.1.1 [1])); γ_b по Таблице 41 СП 16: *а* принято $2d_0$; тогда $\gamma_b = 0,5 \ a/d_b = 1,0$. $\gamma_b = 1,0.0,9 = 0,9$ (см. Примечание 1 к Таблице 41). В [15] указывается, что исчерпание несущей способности в экспериментальных образцах происходило от разрыва элемента в месте прикрепления по ослабленному отверстиями сечению. Поэтому в Таблице 2.1.2 также приведена несущая способность по ослабленному сечению в месте прикрепления *N*, вычисленная в программе.

Расчёт по СП 16:

Нормативное значение несущей способности $N_n = A_n \cdot R_{yn} \cdot \gamma_c \cdot \gamma_{ct} = 3,878 \cdot 32,8 \cdot 1 \cdot 1,1 = 139,918 кH,$ где γ_{ct} – коэффициент условий работы при расчёте по сечению, ослабленному отверстиями для болтов (п.6 Табл.1 СП16).

Расчётное значение несущей способности $N = A_n \cdot R_y \cdot \gamma_c \cdot \gamma_{ct} = 3,878 \cdot 32,8/1,05 \cdot 1 \cdot 1, 1 = 133,255 кH.$

Pacчёт no EC3:

Коэффициент β_2 определяется по Табл. 3.8 [5]. Из интерполяционного расчёта $\beta_2 = 0,436$. Нормативное значение несущей способности $N_{uR} = \beta_2 \cdot A_n \cdot f_u = 0,436 \cdot 3,878 \cdot 44,777 = 75,709 \kappa H$. Расчётное значение несущей способности $N_{uRd} = \beta_2 \cdot A_n \cdot f_u / \gamma_{M2} = 0,436 \cdot 3,878 \cdot 44,777/1,25 = 60,567 \kappa H$.

Расчёт по AISI S100:

Положение центра тяжести швеллера вдоль оси симметрии относительно центральной линии стенки

$$x_{cg} = \frac{2 (c_1 A_{round} + (0.5b_{flat} + r_{centerline})b_{flat} t)}{t (h_{flat} + 2b_{flat}) + 2A_{round}} = 7,82$$
 мм,

где c_1 – расстояние от центральной линии стенки до центра тяжести дуги закругления: $c_1 = r_{centerline} - c = 1,525$ мм, c = 0,637 $r_{centerline} = 2,675$ мм.

Расстояние от плоскости соприкосновения элемента с фасонкой до центра тяжести сечения $x = x_{cg} + t_{nom}/2 = 9,02 \text{ мм}.$

Редукционный коэффициент (Tab. J6.2-1 [7])

$$U_{sl} = \frac{1}{1,1 + \frac{b_f}{b_w + 2b_f} + \frac{x}{L}} = \frac{1}{1,1 + \frac{40,26}{120,82 + 2 \cdot 40,26} + \frac{9,02}{40}} = 0,655$$

Эффективная площадь сечения нетто $A_e = A_n \cdot U = 387,81 \cdot 0,655 = 254,016 \text{ мм}^2$. Номинальная несущая способность $P_m = A_e \cdot F_u = 2,54016 \cdot 44,777 = 113,734 \text{ кN}$ (Eq.J6.2-1) [7]. Расчётная несущая способность

ASD: $P_r = A_e \cdot F_u / \Omega = 51,231 \ \kappa H;$

LRFD: $P_r = \phi \cdot A_e \cdot F_u = 73,927 \ \kappa H.$

Расчёт по Кулаку и Ву:

Площадь поясов с учётом половины дуги закругления $A_0 = 2 \cdot t(b_{flat} + \pi/4 \cdot r_{centerline}) = 2 \cdot 2,36(34,86+3,14/4 \cdot 4,2) = 180,1 \text{ мм}^2$.

Площадь нетто стенки с учётом половины дуги закругления с каждой стороны

 $A_{cn} = A_n - A_0 = 387, 81 - 180, 1 = 207, 71 \text{ MM}^2.$

Значение β при двух рядах болтов $\beta = 0, 5$.

Расчётная несущая способность

 $N_{tr} = 0.9 \cdot f_u \cdot A_{cn} / \gamma_{M1} + \beta \cdot f_y \cdot A_0 / \gamma_{M0} = 0.9 \cdot 44,777 \cdot 2,077/1,25 + 0.5 \cdot 32,8 \cdot 1,801/1,1 = 93,812 \ \kappa H.$ Pacyem no Πa_{Hy} :

Редукционный коэффициент

 $U = (1,15 - 0,86(x/L) - 0,14(W_u/W_c) = 1,15 - 0,86(9,02/40) - 0,14(2(40,26 - 2,4)/120,82) = 0,868.$ Расчётная несущая способность

 $P_{tr} = \phi \cdot U \cdot A_n \cdot f_u = 0,65 \cdot 0,868 \cdot 3,878 \cdot 44,777 = 97,971 \ \kappa H.$

Расчёт по Теху и Джильберту:

$$P_{tr} = \phi A_n f_u \left[\frac{1}{1, 1 + \frac{W_f}{W_c + 2W_f} + \frac{x}{L}} \right] =$$

 $= 0,65 \cdot 3,878 \cdot 44,777(1/(1,1+(40,26-2,4)/(120,82+2(40,26-2,4)) + 9,02/40)) = 74,325 \ \kappa H.$

Сопоставление результатов, полученных выше, с результатами по CFSteel приведено в Таблице 2.1.1.

radinida 2.1.1. Concerabilenne pesymptatob			1		1
Наименование показателя	Обозн	Ед.	Ручной	CESteel	Расхожде
	000511.	ИЗМ.	расчет	CI Ditter	ние, %
Площадь полного сечения	Α	см ²	4,553	4,553	0
Площадь сечения нетто	A_n	см ²	3,878	3,878	0
Расстояние между плоскостью соприкосновения	x	ММ	9,02	9,12	1,1
элемента с фасонкой и центром тяжести сечения					
швеллера					
СП 260					
Расчётное значение несущей способности	N_g	кН	145,695	145,696	0
элемента по неослабленному сечению	N	тт	126.506	126.516	0.01
Расчётное значение несущеи способности по	N	кН	136,506	136,516	0,01
ослаоленному отверстиями сечению в месте					
Прикрепления Расчётное значение несущей способности	N _h	кН	41 568	41 692	03
элемента по смятию в контакте с болтом	1 • <i>bp</i>	NI I	71,000	71,072	0,5
СП16				I	
Расчётное значение несущей способности	Ν	кН	133,255	133,256	0
EC3					
Расчётное значение несущей способности	N_{uRd}	кН	60,567	60,525	0,07
AISI S100					
Редукционный коэффициент	U	-	0,9	0,9	0
Расчётная несущая способность ASD	P_r	κН	51,231	51,26	0,06
Расчётная несущая способность LRFD	P_r	κН	73,927	73,898	0,04
Кулак и Ву					
Площадь поясов с учётом половины дуги	A_0	см ²	1,801	1,801	0
закругления					
Площадь нетто стенки с учётом половины дуги	A_{cn}	см ²	2,077	2,077	0
закругления с каждой стороны					
Расчётная несущая способность	N _{tr}	κН	93,812	93,821	0,01
Пан			•		
Редукционный коэффициент	U	-	0,868	0,866	0,2
Расчётная несущая способность	P_{tr}	κН	97,971	97,771	0,2
Тех и Джильберт			•		
Расчётная несущая способность	P_{tr}	кН	74,325	74,230	0,1

Таблица 2.1.1 – Сопоставление результатов

Результаты расчёта по CFSteel экспериментальных образцов [15] приведены в таблицах 2.1.2, 2.1.3 и.2.1.4.

			1						I		- (,		,						
			K DO	Расст.			Hop	мативное	значени	е несущей	способн	ости				Расчётное	е значени	ие несуще	й способн	юсти	
		+	К-во	м/у	N	N _n , кН	N _{exp} /	N _n , кН	N _{exp} /	N _{uR} кН	N _{exp} /	P _{rn} , кН	N _{exp} /	N, кН	N _{exp} /	N, кН	N _{exp} /	N _{uRd} , кН	N _{exp} /	P _r , кН	N _{exp} /
Образец	Размеры, мм	unom,	D D D	болта	rexp,	СП260	Nn	СП16	Nn	EC3	N _{uR}	AISI	P _{rn}	СП260	Ν	СП16	Ν	EC3	N _{uRd}	AISI	Pr
		MINI	в в соел	ми,	KII																
			соед.	MM																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
A40-BA-2	120,82x40,26				99,05	139,929	0,71	139,93	0,71	75,66	1,31	113,69	0,87	136,516	0,73	133,27	0,74	60,53	1,64	73,898	1,34
A40-BA-3	120,82x40,38				98,00	140,133	0,70	140,13	0,70	75,77	1,29	113,76	0,86	136,715	0,72	133,46	0,73	60,61	1,62	73,942	1,33
B40-BA-1	100,22x40,30				96,62	122,456	0,79	122,46	0,79	66,21	1,46	96,53	1,00	119,47	0,81	116,63	0,83	52,97	1,82	62,743	1,54
B40-BA-2	100,52x40,28				95,70	122,678	0,78	122,68	0,78	66,33	1,44	96,76	0,99	119,686	0,80	116,84	0,82	53,06	1,80	62,896	1,52
B40-BA-3	100,72x40,35				95,70	122,967	0,78	122,97	0,78	66,49	1,44	96,97	0,99	119,968	0,80	117,11	0,82	53,19	1,80	63,032	1,52
C60-BA-1	80,33x60,32				101,68	139,614	0,73	139,61	0,73	75,49	1,35	91,98	1,11	136,209	0,75	132,97	0,76	60,39	1,68	59,788	1,70
C60-BA-2	80,67x60,48	2,4	4	40	99,15	140,176	0,71	140,18	0,71	75,79	1,31	92,32	1,07	136,757	0,72	133,50	0,74	60,63	1,64	60,006	1,65
C60-BA-3	80,77x60,38				98,23	140,091	0,70	140,09	0,70	75,74	1,30	92,34	1,06	136,674	0,72	133,42	0,74	60,60	1,62	60,022	1,64
C50-BA-1	80,45x50,33				93,63	122,703	0,76	122,70	0,76	66,34	1,41	86,66	1,08	119,71	0,78	116,86	0,80	53,07	1,76	56,331	1,66
C50-BA-2	80,28x50,33				95,70	122,559	0,78	122,56	0,78	66,27	1,44	86,53	1,11	119,569	0,80	116,72	0,82	53,01	1,81	56,245	1,70
C50-BA-3	80,38x50,19				97,31	122,405	0,79	122,41	0,79	66,18	1,47	86,53	1,12	119,42	0,81	116,58	0,83	52,95	1,84	56,243	1,73
C40-BA-2	80,55x40,35				94,78	105,793	0,90	105,79	0,90	57,2	1,66	80,51	1,18	103,213	0,92	100,756	0,94	45,76	2,07	52,330	1,81
C40-BA-3	80,38x40,34				93,63	105,631	0,89	105,63	0,89	57,11	1,64	80,36	1,17	103,055	0,91	100,60	0,93	45,69	2,05	52,236	1,79
			C	реднее з	вначение		0,77		0,77		1,42		1,047		0,79		0,81		1,78		1,61
	Cpe	днеква	дратиче	ское отк	лонение		0.06	0.06 0.065 0.119 0.100 0.07							0.068	068 0,149 0,					
			Козффі	лимент в	ลอนอบเหลี		0,004							0,000		0.004		0,000			
			ποσφφι	щиент в	арпации		0,084		0,084		0,084		0,096		0,084		0,084		0,084		0,096
Таблица 2	.1.2 (продол	жени	ie)																		
			K	-во	Расст. м/у	,		Hop	мативное	е значение	несушей	і способно	сти			Расчёти	ное значе	ение несуп	ией спосо	бности	
Образец	Размеры, мм	t _{nc}	^{m,} бол	ІТОВ В	болтами.	Nevry KH	[N _{trr}	. кН	Nevr/	Ptm. кН	Nevr/	Ptrn. K	H I	Nevr/	Ntr. KH	Nevr/	Ptr.	кН	Nevp/	Ptr. кH	Nevp/
1 '	1 ,	М	м	оед.	ММ	(exp)	ſKa	èW]	N _{trn}	[Pan]	Ptrn	[T&C	31	Ptrn	[K&W]	Ntr	[P	anl	Ptr	[T&G]	Ptr
1	2	3	3	4	5	6		7	8	9	10	11	1	12	13	14	1	5	16	17	18
A40-BA-2	120,82x40,26					99,05	13),43	0,76	151,70	0,65	114,9	07 (0,86	100,28	0,99	98	,60	1,00	74,73	1,33
A40-BA-3	120,82x40,38					98,00	13),52	0,75	151,73	0,65	115,0)3 (0,85	100,37	0,98	98	,62 (),99	74,77	1,31
B40-BA-1	100,22x40,30					96,62	10	3,69	0,89	127,08	0,76	97,6	2	0,99	84,64	1,14	82	,60	1,17	63,45	1,52
B40-BA-2	100,52x40,28					95,70	10	3,99	0,88	127,43	0,75	97,8	6	0,98	84,85	1,13	82	,83	1,16	63,61	1,50
B40-BA-3	100,72x40,35					95,70	10	9,26	0,88	127,68	0,75	98,0	7 (0,98	85,05	1,13	83	,00	1,15	63,74	1,50
C60-BA-1	80,33x60,32					101,68	10.	3,17	0,99	94,03	1,08	92,5	4	1,10	83,59	1,22	61	,12	1,66	60,15	1,69
C60-BA-2	80,67x60,48	2	,4	4	40	99,15	10.	3,65	0,96	94,32	1,05	92,8	7	1,07	83,96	1,18	61	,31	1,62	60,37	1,64
C60-BA-3	80,77x60,38					98,23	10	3,68	0,95	94,56	1,04	92,9	0	1,06	83,97	1,17	61	,46	1,60	60,39	1,63
C50-BA-1	80,45x50,33					93,63	95	,56	0,98	101,64	0,92	87,3	6	1,07	76,65	1,22	66	,07	1,42	56,79	1,65
C50-BA-2	80,28x50,33					95,70	95	,38	1,00	101,43	0,94	87,2	3	1,10	76,53	1,25	65	,93	1,45	56,70	1,69
C50-BA-3	80,38x50,19					97,31	95	,38	1,02	101,62	0,96	87,2	3	1,12	76,5	1,27	66	,05	1,47	56,70	1,72
C40-BA-2	80,55x40,35					94,78	87	,94	1,08	103,35	0,92	81,4	0	1,16	69,73	1,36	67	,18	1,41	52,91	1,79
C40-BA-3	80,38x40,34					93,63	87	,75	1,07	103,15	0,91	81,2	6	1,15	69,57	1,35	67	,04	1,40	52,82	1,77
					Средне	е значени	e		0,94		0,88			1,04		1,18			1,35		1,60
			Средн	еквадрат	гическое с	этклонени	e	C	,103		0,148		C	,100		0,116		0	,228		0,154
			-	Kos	ффициен	т вариаци	й	C	,110		0,169		C	,096		0,098		0	,169		0,096

Таблица 2.1.2 - Результаты расчёта по CFSteel экспериментальных образцов [15] (к-во болтов 4, шаг 40 мм)

		+	К-во	Расст. м/у]	Нормативн	ое значение	несущей с	пособности			Расчётно	е значение н	есущей спо	особности	-
Образец	Размеры, мм	L _{nom} ,	болтов в	болтами,	N _{exp} , кН	N _n , кН	N _{exp} /	N _{uR} , кН	N _{exp} /	P _{rn} , кН	N _{exp} /	N, кН	N _{exp} /	N _{uRd} , кН	N _{exp} /	P _r , кН	N _{exp} /
		MIN	соед.	MM		СП260	Nn	EC3	N _{uR}	AISI	Prn	СП260	Ν	EC3	N _{uRd}	AISI	Pr
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C50-CA-1	79,85x50,37				121,00	111,61	1,08	106,21	1,14	96,683	1,25	119,78	1,01	84,97	1,42	62,844	1,93
C50-CA-2	79,85x50,34				119,85	111,56	1,07	106,17	1,13	96,657	1,24	119,73	1,00	84,93	1,41	62,827	1,91
C50-CA-3	79,78x50,33	2,4	4	80	118,93	111,49	1,07	106,10	1,12	96,589	1,23	119,65	0,99	84,88	1,40	62,783	1,89
C40-CA-2	79,87x40,28				115,71	96,01	1,21	91,30	1,27	87,442	1,32	103,03	1,12	73,04	1,58	56,837	2,04
C40-CA-3	79,90x40,34				116,40	96,12	1,21	91,41	1,27	87,523	1,33	103,15	1,13	73,13	1,59	56,890	2,05
				Среднее	значение		1,03		1,19		1,275		1,051		1,48		1,962
		C_{j}	реднеквадр	атическое от	гклонение		0,067		0,077		0,048		0,068		0,097		0,073
			К	оэффициент	вариаций		0,065		0,065		0,037		0,065		0,065		0,037

Таблица 2.1.3 - Результаты расчёта по CFSteel экспериментальных образцов [15] (к-во болтов 4, шаг 80 мм)

Таблица 2.1.3 (окончание)

			К-во	Расст. м/у		J	Нормативн	ое значение	несущей с	пособности			Расчётно	е значение н	есущей спо	особности	
Образец	Размеры, мм	t _{nom} ,	болтов в	болтами,	N _{exp} , кН	N _{trn} , кН	N _{exp} /	P _{trn} , кН	N _{exp} /	P _{trn} , кН	N _{exp} /	N _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /
_	_	MM	соед.	MM		[K&W]	N _{trn}	[Pan]	P _{trn}	[T&G]	P_{trn}	[K&W]	N _{tr}	[Pan]	P _{tr}	[T&G]	P _{tr}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C50-CA-1	79,85x50,37				121,00	94,96	1,27	125,71	0,96	97,56	1,24	76,23	1,59	81,71	1,48	63,41	1,91
C50-CA-2	79,85x50,34				119,85	94,94	1,26	125,70	0,95	97,53	1,23	76,21	1,57	81,70	1,47	63,40	1,89
C50-CA-3	79,78x50,33	2,4	4	80	118,93	94,85	1,25	125,6	0,95	97,46	1,22	76,14	1,56	81,64	1,46	63,35	1,88
C40-CA-2	79,87x40,28				115,71	87,17	1,33	118,28	0,98	88,51	1,31	69,14	1,67	76,88	1,51	57,53	2,01
C40-CA-3	79,90x40,34				116,40	87,25	1,33	118,37	0,98	88,59	1,31	69,21	1,68	76,94	1,51	57,58	2,02
				Среднее	значение		1,29		0,97		1,26		1,62		1,48		1,94
		C	реднеквадр	атическое от	клонение		0,038		0,016		0,045		0,058		0,024		0,069
		-	Ŕ	оэффициент	вариаций		0,029		0,016		0,036		0,036		0,016		0,036

			К-во	Расст. м/у		I	Нормативн	ое значение	несущей с	пособности			Расчётное	е значение н	есущей спо	особности	
Образец	Размеры, мм	L _{nom} ,	болтов в	болтами,	N _{exp} , кН	N _n , кН	N _{exp} /	N _{uR} , кН	N _{exp} /	P _{rn} , кН	N _{exp} /	N, кН	N _{exp} /	N _{uRd} , кН	N _{exp} /	P _r , кН	N _{exp} /
		NIN	соед.	MM		СП260	N _n	EC3	N _{uR}	AISI	P _{rn}	СП260	Ν	EC3	N _{uRd}	AISI	Pr
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C60-DA-2	80,35x60,43				124,91	127,572	0,98	73,53	1,70	105,63	1,18	136,907	0,91	58,83	2,12	68,66	1,82
C60-DA-3	80,42x60,35				126,06	127,502	0,99	73,49	1,72	105,62	1,19	136,832	0,92	58,80	2,14	68,66	1,84
C50-DA-1	80,02x50,28				117,32	111,603	1,05	64,30	1,82	96,74	1,21	119,969	0,98	51,44	2,28	62,88	1,87
C50-DA-2	79,87x50,47	2.4	6	40	121,12	111,781	1,08	64,40	1,88	96,79	1,25	119,96	1,01	51,52	2,35	62,91	1,93
C50-DA-3	79,87x50,40	2,4	0	40	121,23	111,672	1,09	64,34	1,88	96,73	1,25	119,844	1,01	51,47	2,36	62,87	1,93
C40-DA-1	80,00x40,29				112,49	96,121	1,17	55,34	2,03	87,56	1,28	111,462	1,01	44,27	2,54	56,92	1,98
C40-DA-2	79,93x40,33				117,32	96,129	1,22	55,34	2,12	87,54	1,34	103,163	1,14	44,28	2,65	56,90	2,06
C40-DA-3	79,92x40,33				114,79	96,121	1,19	55,34	2,07	87,53	1,31	103,154	1,11	44,27	2,59	56,90	2,02
				Среднее	значение		1,097		1,90		1,25		1,012		2,38		1,93
		C	реднеквадр	атическое от	гклонение		0,091		0,159		0,056		0,080		0,199		0,087
			К	оэффициент	вариаций		0,083		0,084		0,045		0,079		0,084		0,045

Таблица 2.1.4 - Результаты расчёта по CFSteel экспериментальных образцов [15] (к-во болтов 6, шаг 40 мм)

Таблица 2.1.4 (окончание)

			К-во	Расст. м/у		I	Нормативн	ое значение	несущей с	пособности			Расчётное	е значение но	есущей спо	собности	
Образец	Размеры, мм	L _{nom} ,	болтов в	болтами,	N _{exp} , кН	N _{trn} , κΗ	N _{exp} /	P _{trn} , кН	N _{exp} /	P _{trn} , кН	N _{exp} /	N _{tr} , кН	Nexp/	P _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /
		NIN	соед.	MM		[K&W]	N _{trn}	[Pan]	N _{trn}	[T&G]	P _{trn}	[K&W]	N _{tr}	[Pan]	P _{tr}	[T&G]	P _{tr}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C60-DA-2	80,35x60,43				124,91	127,94	0,98	130,11	0,96	106,37	1,17	106,11	1,18	84,57	1,48	69,14	1,81
C60-DA-3	80,42x60,35				126,06	127,92	0,99	130,19	0,97	106,36	1,19	106,08	1,19	84,62	1,49	69,13	1,82
C50-DA-1	80,02x50,28				117,32	115,81	1,01	125,89	0,93	97,62	1,20	95,14	1,23	81,83	1,43	63,46	1,85
C50-DA-2	79,87x50,47	2.4	6	40	121,12	115,87	1,05	125,80	0,96	97,66	1,24	95,23	1,27	81,77	1,48	63,48	1,91
C50-DA-3	79,87x50,40	2,4	0	40	121,23	115,79	1,05	125,76	0,96	97,6	1,24	95,16	1,27	81,74	1,48	63,44	1,91
C40-DA-1	80,00x40,29				112,49	104,19	1,08	118,45	0,95	88,63	1,27	84,58	1,33	76,99	1,46	57,61	1,95
C40-DA-2	79,93x40,33				117,32	104,16	1,13	118,40	0,99	88,61	1,32	84,57	1,39	76,96	1,52	57,59	2,04
C40-DA-3	79,92x40,33				114,79	104,15	1,10	118,39	0,97	88,60	1,30	84,57	1,36	76,95	1,49	57,59	1,99
				Среднее	значение		1,05		0,96		1,24		1,28		1,48		1,91
		Cl	реднеквадр	атическое от	гклонение		0,054		0,017		0,053		0,077		0,026		0,082
			К	оэффициент	вариаций		0,051		0,018		0,043		0,060		0,018		0,043

Задание 2.1.2. В программе CFSteel выполнить расчёты растянутых элементов, испытанных в работе Teh, L. H., Gilbert, B.P. Net section capacity of cold-reduced sheet steel channel braces bolted at the web / L. H. Teh, B.P. Gilbert // Journal of Structural Engineering, ASCE, 2013, pp. 740-747 [16]. Сравнить результаты, полученные в программе по разным методикам между собой, а также с экспериментальными данными.

Элементы выполнены из холодногнутых профилей с поперечным сечением в виде швеллера высотой $W_c=80$, 100 и 120 мм с шириной поясов W_f от 20 до 50 мм и номинальной толщиной 1,5 и 3 мм. По данным [16] t_{base} составляет 1,48 мм и 2,95 мм соответственно. Радиусы закругления r = 2 мм при $t_{nom}=1,5$ мм и r = 3 мм при $t_{nom}=3$ мм. Прикрепление элемента осуществляется к пластине толщиной 6 мм с помощью четырёх болтов, расположенных в два ряда в поперечном и продольном направлении (Рисунок 2.1.3). Расстояние между продольными рядами для швеллера высотой h = 80 мм составляет 40 мм, для швеллеров h = 100 и 120 мм – 50 мм. Диаметр отверстия $d_0=17$ мм. Расстояние между поперечными рядами L варьируется и составляет 50, 75 и 100 мм. Элементы выполнены из листовой оцинкованной стали с прочностными характеристиками: для $t_{nom}=1,5$ мм предел текучести $f_y=605$ МПа, предел прочности $f_u=630$ МПа ($f_u / f_y=1,04$); для $t_{nom}=3$ мм $f_y=530$ МПа, $f_u=580$ МПа ($f_u / f_y=1,09$). Данные значения получены по результатам испытаний стандартных образцов. В [16] указывается, что разрушение всех испытанных образцов происходило от разрыва по ослабленному отверстиями сечению в месте прикрепления. Характерный вид разрушения представлен на Рисунке 2.1.4.

Рисунок 2.1.3 – Размеры испытанных в [16] образцов

Рисунок 2.1.4 – Характерный вид разрушения испытанных в [16] образцов $t_{nom}=3$ мм и $t_{nom}=1,5$ мм

Расчёт: В программе CFSteel выполнен расчёт по нормам СП 260 [1], ЕСЗ [4,5], AISI S100 [7], а также методикам, предложенным Кулаком и Ву [14], Паном [15], Техом и Джильбертом [16]. Определялось нормативное значение несущей способности элементов по ослабленному отверстиями для болтов сечению в месте прикрепления, а также соответствующее расчётное значение. Для вычисления расчётного значения по СП 260 учтён коэффициент надёжности по материалу $\gamma_m = 1,05$, по ЕСЗ частный коэффициент $\gamma_{M2} = 1,25$, а по AISI S100 коэффициент сопротивления $\phi_t = 0,65$, также как и по методикам Пана, Теха и Джильберта. В методике Кулака и Ву для определения расчётного значения ослабленная часть сечения домножается на коэффициент 0,9 и делится на частный коэффициент $\gamma_{M1} = 1,25$; неослабленная часть делится на $\gamma_{M0} = 1,1$ как это делается, например, в индийских нормах IS:800-2007.

В [16] экспериментальные значения несущей способности в явном виде не приведены. Представлены лишь коэффициенты, равные отношению экспериментального значения к полученному расчётным путём по различным методикам $k = N_{3\kappa cn} / N_{pacy}$. Также приведены размеры и геометрические характеристики испытанных образцов (W_c , W_f , x, A_m , L). По этим данным без применения CFSteel вычислена несущая способность P_{nr} по рассматриваемым в [16] методикам: AISI, Пан, Тех и Джильберт (Таблицы 2.1.5, 2.1.8). Далее, перемножением P_{nr} на коэффициент k получена предполагаемая экспериментальная несущая способность P_{exp} . Среднее значение P_{exp} по трём методикам принято далее за экспериментальную несущую способность (таблицы 2.1.6 и 2.1.9).

Кроме того, значения P_{nr} рассчитаны также по CFSteel и приведены в таблицах 2.1.5 и 2.1.8. Расхождение между значениями по CFSteel и значениями, вычисленными по данным [16] для $t_{nom}=1,5$ мм в среднем составляют 3%; для $t_{nom}=3$ мм – 8%. Расхождение носит систематический характер. Анализ показывает, что в [16] расчёт геометрических характеристик (x, A_n) проводился с некоторым упрощением. В то время, как в программе в явном виде без упрощений учитываются закругления в местах гиба. В дальнейшем будут приниматься значения несущей способности, определённые по CFSteel.

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{тп AISI} , кН	P _{exp} / P _{rnAISI}	Р _{ехр AISI,} кН	P _{rn AISI} CFSteel, кН	P _{rnAISI} / P _{rnAISI} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH1					50	190*	109,73	0,75*	80,80	103,80	1,04
CH3	100x30x1,5	100	30	6,28*	75	185^{*}	104,90	$0,80^{*}$	83,92	103,80	1,01
CH5					100	188^{*}	106,60	0,83*	88,47	103,80	1,03
CH7	$100 \times 40 \times 1.5$	100	40	0.56*	50	219*	124,74	0,68*	84,82	120,54	1,03
CH11	100x40x1,5	100	40	9,30	100	217^{*}	123,04	0,75*	92,28	120,54	1,02
CH13					50	248^{*}	141,39	0,65*	91,90	137,33	1,03
CH15	100x50x1,5	100	50	$13,2^{*}$	75	248^{*}	140,62	0,68*	95,62	137,33	1,02
CH17					100	246^{*}	139,48	$0,7^{*}$	97,64	137,33	1,02
Средне	е значение							0,73*			1,025
Средне	квадратическо	е откло	нение								0,009
Коэффі	ициент вариаци	ій						$0,\!084^{*}$			0,009

Таблица 2.1.5,а – Несущая способность испытанных в [16] образцов *t*_{nom}=1,5 мм, вычисленная по методике AISI

* По данным [16]

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{trn Pan} , кН	P _{exp} / P _{trn Pan}	Р _{ехр Рап,} кН	P _{trn Pan} CFSteel, кН	P _{trn Pan} / P _{trn Pan} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH1					50	190*	114,67	$0,70^{*}$	80,27	109,55	1,05
CH3	100x30x1,5	100	30	$6,28^{*}$	75	185*	115,85	0,73*	84,57	114	1,02
CH5					100	188^{*}	119,86	0,74*	88,70	115,33	1,04
CH7	$100 \times 40 \times 1.5$	100	40	0.56*	50	219*	121,08	$0,7^{*}$	84,75	115,79	1,05
CH11	100x40x1,5	100	40	9,30	100	217^{*}	130,67	$0,7^{*}$	91,47	127,41	1,03
CH13					50	248^{*}	122,33	$0,75^{*}$	91,75	117,97	1,04
CH15	100x50x1,5	100	50	13,2*	75	248^{*}	134,15	0,72*	96,59	130,02	1,03
CH17					100	246*	138,94	0,73*	101,42	136,04	1,02
Средне	е значение							$0,72^{*}$			1,033
Средне	квадратическое	е откло	нение								0,011
Коэффі	ициент вариаци	ій						$0,024^{*}$			0,011

Таблица 2.1.5,6 – Несущая способность испытанных в [16] образцов *t*_{nom}=1,5 мм, вычисленная по методике Пана

*По данным [16]

Таблица 2.1.5,в – Несущая способность испытанных в [16] образцов *t_{nom}=1,5 мм*, вычисленная по методике Теха и Джильберта

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{trn T&G} , кН	P _{exp} / P _{trn T&G}	Р _{ехр Т&G,} кН	Р _{trn T&G} CFSteel, кН	P _{trn T&G} / P _{trn T&G} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH1					50	190^{*}	84,71	0,95*	80,47	81,07	1,04
CH3	100x30x1,5	100	30	6,28*	75	185^{*}	85,0	0,99*	84,15	83,72	1,02
CH5					100	188^{*}	87,71	1*	87,71	85,11	1,03
CH7	$100 \times 40 \times 1.5$	100	40	0.56*	50	219^{*}	91,58	0,93*	85,17	87,89	1,04
CH11	100x40x1,5	100	40	9,30	100	217^{*}	96,42	0,95*	91,60	94,12	1,02
CH13					50	248^{*}	96,80	0,95*	91,96	93,87	1,03
CH15	100x50x1,5	100	50	13,2*	75	248^{*}	102,39	0,94*	96,24	99,49	1,03
CH17					100	246*	104,57	0,94*	98,30	102,56	1,02
Средне	е значение							0,96*			1,030
Средне	квадратическое	е откло	нение								0,010
Коэффі	ициент вариаци	й						$0,028^{*}$			0,010

*По данным [16]

Таблица 2.1.6 - Экспериментальные значения несущей способности

Обра зец	Р _{ехр AISI,} кН	Р _{ехр Рап,} кН	Р _{ехр Т&G,} кН	Мах. разность кН	Среднее значение Р _{ехр} , кН
CH1	80,80	80,27	80,47	0,53	80,51
CH3	83,92	84,57	84,15	0,65	84,21
CH5	88,47	88,7	87,71	0,99	88,29
CH7	84,82	84,75	85,17	0,42	84,91
CH11	92,28	91,47	91,60	0,81	91,78
CH13	91,90	91,75	91,96	0,56	91,87
CH15	95,62	96,59	96,24	0,97	96,15
CH17	97,64	101,4	98,30	3,36	99,12
		Среднее	значение	1,04	

05m	Размеры	N	Норматин	вное знач	нение несу	щей спо	собности	1	Расчётн	юе значе	ение несуп	цей спосо	обности	
Оора	сечения,	Nexp,	N _n , кН	N _{exp} /	N _{uR} , кН	N _{exp} /	P _{rn} , кН	N _{exp} /	N, кН	N _{exp} /	N _{uRd} , кН	N _{exp} /	P _r , кН	N _{exp} /
зец	MM	KII	СП 260	Nn	EC3	N _{uR}	AISI	P _{rn}	СП260	N	EC3	N _{uRd}	AISI	Pr
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH1		80,51	108,06	0,75	52,24	1,54	79,63	1,01	113,21	0,71	41,79	1,93	51,76	1,56
CH3	100x30x1,5	84,21	108,06	0,78	72,59	1,16	82,06	1,03	113,21	0,74	58,07	1,45	53,34	1,58
CH5		88,29	108,06	0,82	80,73	1,09	83,34	1,06	113,21	0,78	64,58	1,37	54,17	1,63
CH7	100-40-15	84,91	125,97	0,67	60,67	1,40	86,66	0,98	131,97	0,64	48,54	1,75	56,33	1,51
CH11	100x40x1,5	91,78	125,97	0,73	93,76	0,98	92,51	0,99	131,97	0,70	75,01	1,22	60,13	1,53
CH13		91,87	143,88	0,64	69,11	1,33	92,82	0,99	150,73	0,61	55,29	1,66	60,33	1,52
CH15	100x50x1,5	96,15	143,88	0,67	96,04	1,00	98,17	0,98	150,73	0,64	76,83	1,25	63,81	1,51
CH17		99,12	143,88	0,69	106,81	0,93	101,09	0,98	150,73	0,66	85,45	1,16	65,71	1,51
Среднее	значение			0,72		1,18		1,002		0,69		1,47		1,542
Среднек: отклонен	вадратическо ние	e		0,061		0,222		0,028		0,058		0,277		0,044
Коэффиі	циент вариаці	ий		0,085		0,188		0,028		0,085		0,188		0,028

Таблица	2.1.7,a	—	Сравнение	экспериментальных	значений	несущей	способности	c
результат	ами CFS	teel	по нормам С	П 260, ЕСЗ и AISI для	t _{nom} =1,5 мм	ı		

Таблица 2.1.7,6 – Сравнение экспериментальных значений несущей способности с результатами CFSteel по методикам Кулака и Ву, Пана, Теха и Джильберта для $t_{nom}=1,5$ мм

	Deptopt		Норматин	вное знач	нение несу	щей спо	собности	1	Расчётн	юе значе	ение несуп	цей спосо	обности	
Обра	газмеры	N _{exp} ,	N _{trn} , кН	N _{exp} /	P _{trn} кН	N _{exp} /	P _{trn} ,	N _{exp} /	N _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /
зец	ссчения,	кН	K&W	N _{trn}	Pan	Ptrn	кН	Ptrn	K&W	N _{tr}	Pan	Ptr	T&G	Ptr
	MIM						T&G							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH1		80,51	98,56	0,82	109,55	0,73	81,07	0,99	76,66	1,05	71,21	1,13	52,70	1,53
CH3	100x30x1,5	84,21	98,56	0,85	114	0,74	83,72	1,01	76,66	1,10	74,10	1,14	54,42	1,55
CH5		88,29	98,56	0,90	115,33	0,77	85,11	1,04	76,66	1,15	74,96	1,18	55,32	1,60
CH7	$100 \times 40 \times 1.5$	84,91	107,49	0,79	115,79	0,73	87,89	0,97	84,78	1,00	75,26	1,13	57,13	1,49
CH11	100x40x1,5	91,78	107,49	0,85	127,41	0,72	94,12	0,98	84,78	1,08	82,82	1,11	61,18	1,50
CH13		91,87	116,45	0,79	117,97	0,78	93,87	0,98	92,92	0,99	76,68	1,20	61,02	1,51
CH15	100x50x1,5	96,15	116,45	0,83	130,02	0,74	99,49	0,97	92,92	1,03	84,51	1,14	64,67	1,49
CH17		99,12	116,45	0,85	136,04	0,73	102,56	0,97	92,92	1,07	88,43	1,12	66,66	1,49
Среднее	значение			0,84		0,74		0,99		1,06		1,14		1,52
Среднек	вадратическо	e												
отклонен	ние			0,036		0,020		0,025		0,053		0,030		0,039
Коэффи	циент вариаці	ий		0,044		0,026		0,025		0,050		0,026		0,025

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{rn AISI} , кН	$\frac{P_{exp}}{P_{rn \ AISI}}$	Р _{ехр AISI,} кН	P _{rn AISI} _{CFSteel} , кН	P _{rn AISI} / P _{rn AISI} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH2					50	381	198,88	0,81	161,09	188,11	1,06
CH4	100x30x3	100	30	6,9	75	386	201,49	0,86	173,28	188,11	1,07
CH6					100	389	203,06	0,88	178,69	188,11	1,08
CH8					50	449	234,38	0,71	166,41	218,91	1,07
CH10	100x40x3	100	40	10,2	75	450	234,90	0,76	178,52	218,91	1,07
CH12					100	450	234,90	0,83	194,97	218,91	1,07
CH14					50	502	262,04	0,67	175,57	247,49	1,06
CH16	100x50x3	100	50	13,9	75	507	264,65	0,71	187,90	249,71	1,06
CH18					100	501	261,52	0,71	185,68	249,71	1,05
CH19					40	408	212,36	0,69	146,53	197,63	1,07
CH20	80x40x3	80	40	11,4	60	392	204,62	0,72	147,33	200,43	1,02
CH21					80	407	212,45	0,73	155,09	200,43	1,06
CH22		80	20	4,6	40	290	151,38	0,84	127,16	138,84	1,09
CH23	80x20x3				60	287	149,81	0,91	136,33	138,84	1,08
CH24					80	294	153,47	0,95	145,79	138,83	1,11
CH25		120	40	9,3	50	506	264,13	0,79	208,66	249,71	1,06
CH26	120x40x3				75	500	261,00	0,81	211,41	249,71	1,05
CH27					100	502	262,04	0,83	217,50	249,71	1,05
Средне	е значение							$0,78^{*}$			1,07
Средне	квадратическое	е откло	нение					ٹ			0,019
Коэффі	ициент вариаци	ій						0,096			0,018

Таблица 2.1.8,а – Несущая способность испытанных в [16] образцов *t_{nom}=3 мм*, вычисленная по методике AISI

*По данным [16]

Таблица 2.1.8,6 – Несущая способность испытанных в [16] образцов *t*_{nom}=3 *мм*, вычисленная по методике Пана

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{trn Pan} , кН	P _{exp} / P _{trn Pan}	Р _{ехр Рап,} кН	P _{trn Pan} CFSteel, кН	P _{trn Pan} / P _{trn Pan} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH2					50	381	209,34	0,77	161,19	194,63	1,08
CH4	100x30x3	100	30	6,9	75	386	220,94	0,78	172,34	204,03	1,08
CH6					100	389	227,12	0,78	177,16	208,72	1,09
CH8					50	449	224,63	0,75	168,47	205,39	1,09
CH10	100x40x3	100	40	10,2	75	450	240,39	0,74	177,89	221,08	1,09
CH12					100	450	248,02	0,74	183,54	228,93	1,08
CH14					50	502	224,46	0,78	175,08	208,66	1,08
CH16	100x50x3	100	50	13,9	75	507	250,13	0,75	187,60	232,51	1,08
CH18					100	501	258,75	0,72	186,30	244,44	1,06
CH19					40	408	181,01	0,81	146,61	165,03	1,10
CH20	80x40x3	80	40	11,4	60	392	192,48	0,76	146,29	185	1,04
CH21					80	407	209,49	0,74	155,02	194,98	1,07
CH22		80	20	4,6	40	290	165,02	0,78	128,72	148,86	1,11
CH23	80x20x3				60	287	168,80	0,81	136,73	154,26	1,09
CH24					80	294	175,73	0,83	145,86	154,26	1,14
CH25		120	40	9,3	50	506	263,17	0,8	210,53	244,22	1,08
CH26	120x40x3				75	500	275,51	0,77	212,14	260,54	1,06
CH27					100	502	284,37	0,77	218,97	268,7	1,06
Средне	е значение							$0,77^{*}$			1,08
Средне	квадратическое	е откло	нение								0,022
Коэффициент вариаций 0,039 [*] 0,020										0,020	

*По данным [16]

Обра зец	Размеры сечения, мм	W _с , мм	W _f , мм	х, мм	L, мм	А _n , мм ²	Р _{trn T&G} , кН	P _{exp} / P _{trn T&G}	Р _{ехр Т&G,} кН	P _{trn T&G} CFSteel, кН	P _{trn T&G} / P _{trn T&G} CFSteel
1	2	3	4	5	6	7	8	9	10	11	12
CH2					50	381	155,02	1,04	161,22	144,72	1,07
CH4	100x30x3	100	30	6,9	75	386	162,29	1,07	173,65	150,15	1,08
CH6					100	389	166,33	1,07	177,97	153,03	1,09
CH8					50	449	170,63	0,98	167,22	157,19	1,09
CH10	100x40x3	100	40	10,2	75	450	178,99	1	178,99	165,21	1,08
CH12					100	450	183,26	1	183,26	169,52	1,08
CH14					50	502	178,85	0,98	175,27	168,16	1,06
CH16	100x50x3	100	50	13,9	75	507	191,53	0,98	187,70	179,01	1,07
CH18					100	501	195,15	0,96	187,35	184,97	1,06
CH19					40	408	144,73	1,02	147,63	133,94	1,08
CH20	80x40x3	80	40	11,4	60	392	147,64	0,99	146,16	142,9	1,03
CH21					80	407	158,16	0,98	155,00	147,84	1,07
CH22		80	20	4,6	40	290	121,74	1,05	127,82	109,92	1,11
CH23	80x20x3				60	287	123,92	1,1	136,31	113,61	1,09
CH24					80	294	128,78	1,13	145,52	115,54	1,11
CH25		120	40	9,3	50	506	197,50	1,06	209,35	184,33	1,07
CH26	120x40x3				75	500	203,65	1,04	211,80	193,11	1,05
CH27					100	502	209,02	1,04	217,38	197,82	1,06
Средне	е значение							$1,02^{*}$			1,08
Средне	квадратическое	е откло	нение								0,019
Коэффициент вариаций 0,045 [*] 0,018										0,018	

Таблица 2.1.8, в – Несущая способность испытанных в [16] образцов *t_{nom}=3 мм*, вычисленная по методике Теха и Джильберта

*По данным [16]

Таблица 2.1.9 - Экспериментальные значения несущей способности

0572	D	D _	D	Max	Среднее
Dopa	• exp AISI,	Р _{ехр Рап,} кН	^I exp T&G, r∕U	разность,	значение
зец	КП	КП	КП	кН	P _{exp} , кН
CH2	161,09	161,19	161,22	0,13	161,17
CH4	173,28	172,34	173,65	1,31	173,09
CH6	178,69	177,16	177,97	1,53	177,94
CH8	166,41	168,47	167,22	2,06	167,37
CH10	178,52	177,89	178,99	1,1	178,47
CH12	-	183,54	183,26	0,28	183,4
CH14	175,57	175,08	175,27	0,49	175,31
CH16	187,90	187,60	187,70	0,3	187,73
CH18	185,68	186,30	187,35	1,67	186,44
CH19	146,53	146,61	147,63	1,1	146,92
CH10	147,33	146,29	146,16	1,17	146,59
CH21	155,09	155,02	155,00	0,09	155,04
CH22	127,16	128,72	127,82	1,56	127,90
CH23	136,33	136,73	136,31	0,42	136,46
CH24	145,79	145,86	145,52	0,34	145,72
CH25	208,66	210,53	209,35	1,87	209,51
CH26	211,41	212,14	211,80	0,66	211,78
CH27	217,50	218,97	217,38	1,59	217,95
		0,98			

05mg	Размеры сечения, N_{exp} , kH Нормативныое значение несущей способности Расчётное (N_n, кH) Расчётное (N_u, кH) Расчётно				юе значе	ение несуп	цей спосо	обности						
Oopa	сечения,	N _{exp} ,	N _n , кН	N _{exp} /	N _{uR} , кН	N _{exp} /	P _{rn} , кН	N _{exp} /	N, кН	N _{exp} /	N _{uRd} , κΗ	N _{exp} /	P _r , кН	N _{exp} /
зец	MM	KII	СП260	Nn	EC3	N _{uR}	AISI	Pm	СП260	N	EC3	N _{uRd}	AISI	Pr
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH2		161,17	181,77	0,89	94,67	1,70	139,53	1,16	190,43	0,85	75,74	2,13	90,69	1,78
CH4	100x30x3	173,09	181,77	0,95	131,56	1,32	144,18	1,20	190,43	0,91	105,25	1,64	93,72	1,85
CH6		177,94	181,77	0,98	146,31	1,22	146,63	1,21	190,43	0,93	117,05	1,52	95,31	1,87
CH8	100-10-2	167,37	213,04	0,79	110,17	1,52	152,74	1,10	223,19	0,75	88,14	1,90	99,28	1,69
CH10	100x40x5	178,47	213,04	0,84	153,09	1,17	159,87	1,12	223,19	0,80	122,47	1,46	103,91	1,72
CH12		183,40	213,04	0,86	170,26	1,08	163,68	1,12	223,19	0,82	136,21	1,35	106,40	1,72
CH14		175,31	244,31	0,72	125,67	1,40	164,29	1,07	255,94	0,68	100,54	1,74	106,79	1,64
CH16	100x50x3	187,73	244,31	0,77	174,63	1,08	174,19	1,08	255,94	0,73	139,70	1,34	113,22	1,66
CH18		186,44	244,31	0,76	194,22	0,96	179,60	1,04	255,94	0,73	155,38	1,20	116,74	1,60
CH19		146,92	181,77	0,81	104,5	1,41	134,78	1,09	190,43	0,77	83,60	1,76	87,61	1,68
CH20	80x40x3	146,59	181,77	0,81	146,61	1,00	141,58	1,04	190,43	0,77	117,29	1,25	92,03	1,59
CH21		155,04	181,77	0,85	155,89	0,99	145,25	1,07	190,43	0,81	124,71	1,24	94,41	1,64
CH22		127,90	119,23	1,07	72,38	1,77	-	-	124,91	1,02	57,90	2,21	-	-
CH23	80x20x3	136,46	119,23	1,14	100,86	1,35	-	-	124,91	1,09	80,69	1,69	-	-
CH24		145,72	119,23	1,22	107,98	1,35	-	-	124,91	1,17	86,38	1,69	-	-
CH25		209,51	244,31	0,86	125,67	1,67	179,94	1,16	255,94	0,82	100,54	2,08	116,96	1,79
CH26	120x40x3	211,78	244,31	0,87	174,63	1,21	187,77	1,13	255,94	0,83	139,70	1,52	122,05	1,74
CH27		217,95	244,31	0,89	194,22	1,12	191,94	1,14	255,94	0,85	155,38	1,40	124,76	1,75
Среднее	значение			0,89		1,29		-		0,85		1,62		-
Среднен	квадратическ	oe				0.240				0.120		0.211		
отклоне	ние			0,135		0,249		-		0,129		0,511		-
Коэффи	циент вариаі	ций		0,152		0,192		-		0,152		0,192		-

Таблица 2.1.10,а – Сравнение экспериментальных значений несущей способности с результатами CFSteel по нормам СП 260, ЕСЗ и AISI для *t_{nom}=3 мм*

Таблица 2.1.10,6 – Сравнение экспериментальных значений несущей способности с результатами CFSteel по методикам Кулака и Ву, Пана, Теха и Джильберта для $t_{nom}=3 \text{ мм}$

	Departments		Норматии	зное знач	нение несу	щей спо	собности	1	Расчётн	юе значе	ние несуп	цей спос	обности	
Обра	Размеры	N _{exp} ,	N _{trn} , кН	N _{exp} /	P _{trn} , кН	N _{exp} /	P _{trn} ,	N _{exp} /	N _{tr} , кН	N _{exp} /	P _{tr} , кН	N _{exp} /	P _{tr} , кН	Nexp/
зец	сечения,	кН	K&W	N _{trn}	Pan	P _{trn}	кН	Ptrn	K&W	N _{tr}	Pan	P _{tr}	T&G	P _{tr}
	MIM						T&G							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH2		161,17	170,33	0,95	194,63	0,83	144,72	1,11	133,42	1,21	126,51	1,27	94,07	1,71
CH4	100x30x3	173,09	170,33	1,02	204,03	0,85	150,15	1,15	133,42	1,30	132,62	1,31	97,60	1,77
CH6		177,94	170,33	1,04	208,72	0,85	153,03	1,16	133,42	1,33	135,67	1,31	99,47	1,79
CH8	$100 \times 10 \times 2$	167,37	185,97	0,90	205,39	0,81	157,19	1,06	147,63	1,13	133,50	1,25	102,17	1,64
CH10	100x40x5	178,47	185,97	0,96	221,08	0,81	165,21	1,08	147,63	1,21	143,70	1,24	107,39	1,66
CH12		183,40	185,97	0,99	228,93	0,80	169,52	1,08	147,63	1,24	148,80	1,23	110,19	1,66
CH14		175,31	201,6	0,87	208,66	0,84	168,16	1,04	161,85	1,08	135,63	1,29	109,30	1,60
CH16	100x50x3	187,73	201,6	0,93	232,51	0,81	179,01	1,05	161,85	1,16	151,13	1,24	116,36	1,61
CH18		186,44	201,6	0,92	244,44	0,76	184,97	1,01	161,85	1,15	158,89	1,17	120,23	1,55
CH19		146,92	158,59	0,93	165,03	0,89	133,94	1,10	127,92	1,15	107,27	1,37	87,06	1,69
CH20	80x40x3	146,59	158,59	0,92	185	0,79	142,9	1,03	127,92	1,15	120,25	1,22	92,89	1,58
CH21		155,04	158,59	0,98	194,98	0,80	147,84	1,05	127,92	1,21	126,74	1,22	96,10	1,61
CH22		127,90	127,32	1,00	148,86	0,86	109,92	1,16	99,49	1,29	96,76	1,32	71,45	1,79
CH23	80x20x3	136,46	127,32	1,07	154,26	0,88	113,61	1,20	99,49	1,37	100,27	1,36	73,85	1,85
CH24		145,72	127,32	1,14	154,26	0,94	115,54	1,26	99,49	1,46	100,27	1,45	75,10	1,94
CH25		209,51	220,19	0,95	244,22	0,86	184,33	1,14	172,27	1,22	158,74	1,32	119,81	1,75
CH26	120x40x3	211,78	220,19	0,96	260,54	0,81	193,11	1,10	172,27	1,23	169,35	1,25	125,52	1,69
CH27		217,95	220,19	0,99	268,7	0,81	197,82	1,10	172,27	1,27	174,66	1,25	128,58	1,70
Среднее	значение			0,97		0,83		1,11		1,23		1,28		1,70
Среднен	квадратическ	oe		0.066		0.042		0.065				0.067		0 101
отклоне	ние			0,000		0,045		0,005		0,095		0,007		0,101
Коэффи	циент вариа	ций		0,068		0,052		0,059		0,077		0,052		0,059

Задание 2.1.3. В программе CFSteel выполнить расчёты растянутых элементов, результаты испытаний которых представлены в работе Bolandim, E.A., Beck, A.T., Malite, M. Bolted connections in cold-formed steel: reliability analysis for rupture in net section / E.A. Bolandim, A.T. Beck, M. Malite // Journal of Structural Engineering, ASCE, 2013, pp. 748-756 [17]. Сравнить результаты, полученные в программе с экспериментальными данными.

Элементы выполнены из холодногнутых профилей с поперечным сечением в виде швеллера с номинальными размерами: $100x40x1,55 \ mm$ (1 тип) $u \ 150x50x3,75 \ mm$ (2 тип). Внутренний радиус закругления $r = 5 \ mm$. Прикрепление элемента осуществляется болтами через пояса. Болты располагаются в один ряд по каждому поясу посередине ширины с количеством болтов два, три и четыре. Для образцов 1 типа применены болты номинальным диаметром $d=12,5 \ mm$ с отверстиями $d_0=14 \ mm$, шаг отверстий в продольном направлении 50 mm; для образцов 2 типа болты номинальным диаметром $d=16 \ mm$ с отверстиями $d_0=18 \ mm$, шаг $64 \ mm$ (Рисунок 2.1.5). Образцы 1 типа выполнены из листовой оцинкованной стали номинальной толщиной $t_{nom}=1,55 \ mm$ (фактическая толщина $t=1,5 \ mm$) с пределом текучести $f_y=333 \ mma$ и пределом прочности $f_u=451 \ mma$ ($f_u \ f_y=1,35$), полученными по результатам испытаний стандартных образцов. Образцы 2 типа выполнены из листовой углеродистой стали $t_{nom}=3,75 \ mmma$ (фактическая толщина $t=3,9 \ mmma$) с пределом текучести $f_y=287 \ mmma$ и пределом прочности $f_u=399 \ mmma$ ($f_u \ f_y=1,39$). В [17] указывается, что разрушение всех испытанных образцов происходило от разрыва по ослабленному отверстиями сечению в месте прикрепления.

Рисунок 2.1.5 – Расположение отверстий для болтов в образцах, испытанных в [17]

Расчёт: В программе CFSteel выполнен расчёт по нормам СП 260 [1], СП 16 [2], ЕСЗ [4,5], AISI S100 [7]. Определялось нормативное значение несущей способности элементов по ослабленному отверстиями для болтов сечению в месте прикрепления, а также соответствующее расчётное значение. Для вычисления расчётного значения по СП 260 и СП 16 учтён коэффициент надёжности по материалу $\gamma_m = 1,05$, по ЕСЗ частный коэффициент $\gamma_{M2} = 1,25$, а по AISI S100 коэффициент сопротивления $\phi_t = 0,65$. В расчёт принята фактическая толщина стали. По СП260 значения несущей способности вычислялись дважды: по п.7.7.2.1 и по п.7.7.2.4. В последнем случае полагалось, что сечение состоит из двух уголков, прикрепляемых одной полкой болтами. По СП16 значения несущей способности вычислялись вычислялись также дважды: по формуле (5) и по формуле (6). В последнем случае полагалось, что сечение состоит из двух уголков, прикрепляемых одной полкой болтами. Результаты расчёта приведены в таблице 2.1.11.

Таблица	2.1.11,a –	Сравнение	экспериментальных	значений	несущей	способности	[17]	c
результат	гами CFStee	l по нормам	СП 16, ЕС3, AISI и С	П 260 для	сечений 10	00x40x1,55		

	Dogwopu	К-во		Нормат	ивное зн	начение н	несущей си	тособн	ости	Расчётн	ое значе	ение несу	ущей с	пособно	сти
Образец	газмеры сечения, ММ	попереч. рядов, шт.	N _{exp} , кН	N _n , кН СП 16	N _{exp} / N _n	N _{uR} , кН EC3	N _{exp} / N _{uR}	Р _т , кН AISI	N _{exp} / P _m	N, кН СП 16	N _{exp} / N	N _{uRd} , кН EC3	N _{exp} / N _{uRd}	Р _г , кН AISI	$\frac{N_{exp}}{P_r}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C1B2-1		2	64,9		0,84	45.04	1,41	29 61	1,68		0,88	26 75	1,77	25.00	2,66
C1B2-2		2	64		0,83	45,94	1,39	38,01	1,66		0,87	30,75	1,74	25,09	2,66
C1C2-1	100x40x1,5	3	82,6	77,05	1,07	50,91	1,62	48,47	1,70	73,38	1,13	40,73	2,03	31,51	2,56
C1D2-1		4	91,5		1,19	50.01	1,80	52.08	1,73		1,25	40.72	2,25	24.44	2,48
C1D2-2		4	92,2		1,20	50,91	1,81	32,98	1,74		1,26	40,75	2,26	54,44	2,48
Среднее	значение				1,03		1,61		1,70		1,08		2,01		2,57
Среднен	свадратичес	кое отклон	нение		0,18		0,20		0,03		0,19		0,25		0,09
Коэффициент вариаций			0,18		0,13		0,02		0,18		0,13		0,03		

				Нормат	ивное	Расчё	тное
	Department	К-во		значе	ние	значе	ние
Образен	Размеры	попереч.	N _{exp} ,	несуг	цей	несуг	цей
ооризец	ссчения,	рядов,	кН	способи	ности	способ	ности
	IVIIVI	ШТ.		N _n , кН	N _{exp} /	N, кН	N _{exp} /
				СП 260	N _n	СП 260	Ν
17	18	19	20	21	22	23	24
C1B2-1		2	64,9		0,93		0,88
C1B2-2		2	64		0,91		0,87
C1C2-1	100x40x1,5	3	82,6	70,04	1,18	73,38	1,13
C1D2-1		4	91,5		1,31		1,25
C1D2-2		4	92,2		1,32		1,26
Среднее	Среднее значение				1,03		1,08
Среднен	квадратическое	е отклонени	ие		0,18	0,19	
Коэффи	циент вариаци	й			0,18		0,18

Таблица 2.1.11,6 – Сравнение экспериментальных значений несущей способности [17] с результатами CFSteel по нормам СП 16, ЕСЗ и AISI для сечений 150х50х3,75

	Doowenti	К-во		Нормат	ивное зн	начение в	несущей сі	пособнос	ТИ	Расчётн	юе зна	чение не	есущей с	пособно	сти
Образец	сечения, ММ	поперечн. рядов, шт	N _{exp} , кН	N _n , кН СП 16	N _{exp} / N _n	N _{uR} , кН EC3	N _{exp} / N _{Rdr}	Р _т , кН AISI	N _{exp} / P _{rn}	N _r , кН СП 16	N _{exp} / N _r	N _{uRd} , кН ЕСЗ	N _{exp} / N _{uRd}	Р _г , кН AISI	$\frac{N_{exp}}{P_r}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
C3B2-1		2	188		0,76	124 41	1,40	116 51	1,61		0,80	107 52	1,75	75 72	2,48
C3B2-2	150-50-	2	186		0,75	154,41	1,38	110,51	1,60		0,79	107,55	1,73	15,15	2,46
C3C2-1	150X50X 2.00	3	226	246,53	0,92	149,15	1,52	149,63	1,51	234,79	0,96	119,32	1,89	97,26	2,32
C3D2-1	3,90	4	263		1,07	140.15	1,76	165 21	1,59		1,12	110.22	2,20	107.45	2,45
C3D2-2		4	258		1,05	149,15	1,73	105,51	1,56		1,10	119,52	2,16	107,43	2,40
Среднее	е значение				0,91		1,56		1,57		0,95		1,95		2,42
Среднен	свадратиче	ское отклоне	ение		0,15		0,18		0,04		0,16		0,22		0,06
Коэффи	циент вари	аций			0,16		0,12		0,03		0,16		0,12		0,03

		К-во		Нормат	ивное ние	Расчё значе	тное
05	Размеры	попереч.	N _{exp} ,	несуг	цей	несу	цей
Ооразец	сечения,	рядов,	кĤ	способ	ности	способ	ности
	MM	шт.		N _n , кН	N _{exp} /	N, кН	N _{exp} /
				СП 260	Nn	СП 260	N
17	18	19	20	21	22	23	24
C3B2-1		2	188		0,84		0,78
C3B2-2		2	186		0,83		0,77
C3C2-1	150x50x3,90	3	226	224,12	1,01	240,52	0,94
C3D2-1		4	263		1,17		1,09
C3D2-2		4	258		1,15		1,07
Среднее	е значение				1,03		1,08
Среднен	квадратическое	отклонени	ие	0,18			0,19
Коэффи	циент вариаци	й			0,18	0,18	

		,									
				Нормати	вное з	начение не	есущей	Расчётно	е знач	ение не	есущей
	Department	К-во	Pexp	способно	ости			способно	ости		
Образец	газмеры	попереч.	кН	Prn	D /	Prn	D /	Pr	D /	Pr	
	ооразца, мм	рядов	[17]	(7.7.2.1)	Γ _{exp} / D	(7.7.2.4)	Γ _{exp} / D	(7.7.2.1)	r _{exp} /	(7.7.2.4)	Pexp/Pr
				кН	1 m	кН	1 m	кН	1 r	кН	
C1B2-1		2	64,9		0,84	26.62	1,77		0,88	27.55	2,36
C1B2-2		2	64		0,83	30,05	1,75		0,87	27,55	2,32
C1C2-1	100x40x1,5	3	82,6	77,05	1,07	50	1,65	73,38	1,13	37,04	2,23
C1D2-1]	4	91,5]	1,19	56.82	1,61		1,25	42 74	2,14
C1D2-2]	4	92,2]	1,20	50,82	1,62]	1,26	42,74	2,16

Таблица 2.1.11,в – Сравнение расчётных значений, вычисленных по п.7.7.2.1 и п.7.7.2.4 СП 260 для сечений 100х40х1,55

Таблица 2.1.11, г – Сравнение расчётных значений, вычисленных по п.7.7.2.1 и п.7.7.2.4 СП 260 для сечений 150х50х3,75

	D	К-во	Pexp	Нормати способно	вное з ости	начение не	Расчётно способно	тное значение несущей обности			
Образец	Размеры образца, мм	попереч. рядов	кН [17]	Р _{гп} (7.7.2.1) кН	P _{exp} / P _m	Р _{гп} (7.7.2.4) кН	P _{exp} / P _{rn}	Р _г (7.7.2.1) кН	P _{exp} / Pr	Р _г (7.7.2.4) кН	P_{exp}/P_r
C3B2-1		2	188		0,84	147.06	1,28		0,78	110.62	1,70
C3B2-2		2	186		0,83	147,00	1,26		0,77	110,02	1,68
C3C2-1	150x50x3,90	3	226	224,12	1,01	185,19	1,22	240,52	0,94	138,5	1,63
C3D2-1		4	263	,	1,17	204.08	1,29		1,09	152.95	1,71
C3D2-2		4	258		1,15	204,08	1,26		1,07	155,85	1,68

Таблица 2.1.11,д – Сравнение расчётных значений, вычисленных по формулам (5) и (6) СП 16 для сечений 100х40х1,55

	P	К-во	Pexp	Нормати	вное з	начение н	есущей	Расчётно	е знач	ение не	есущей
Образец	Размеры образца, мм	попереч	кН	Спосооно P _m (5)	ости P _{exp} /	P _m (6)	Pexp/	P_r (5)	ости P _{exp} /	P _r (6)	P _{exp} /
		рядов	[10]	кН	P _{rn(5)}	кН	P _{m(6)}	кН	P _{r(5)}	кН	P _{r(6)}
C1B2-1		2	64,9		0,84	27 72	1,72		0,88	25.40	1,83
C1B2-2		2	64		0,83	57,75	1,70		0,87	55,40	1,81
C1C2-1	100x40x1,5	3	82,6	77,05	1,07	45,36	1,82	73,38	1,13	43,20	1,91
C1D2-1		4	91,5		1,19	40.70	1,84		1,25	17.24	1,93
C1D2-2		4	92,2		1,20	49,70	1,86		1,26	47,34	1,95

Таблица 2.1.11,е – Сравнение расчётных значений, вычисленных по формулам (5) и (6) СП 16 для сечений 150х50х3,75

05	Размеры	К-во	Pexp	Нормати способно	вное з ости	начение н	есущей	Расчётно способно	ое знач ости	ение не	есущей
Ооразец	образца, мм	рядов	кн [16]	Р _т (5) кН	P _{exp} / P _{rn(5)}	Р _т (6) кН	P _{exp} / P _{m(6)}	Р _г (5) кН	P _{exp} / P _{r(5)}	Р _г (6) кН	$\begin{array}{c} P_{exp} / \\ P_{r(6)} \end{array}$
C3B2-1		2	188		0,76	112.24	1,66		0,80	107.04	1,74
C3B2-2		2	186		0,75	115,54	1,64		0,79	107,94	1,72
C3C2-1	150x50x3,90	3	226	246,53	0,92	141,83	1,59	234,79	0,96	135,07	1,67
C3D2-1	C3D2-1 C3D2-2	4	263		1,07	157 47	1,67		1,12	140.07	1,75
C3D2-2		4	258		1,05	137,47	1,64		1,10	149,97	1,72

Задание 2.1.4. В программе CFSteel выполнить расчёты растянутых элементов из работы Wallace J.A., Shuster R.M., LaBoube R.A. Testing of Bolted Cold-Formed Steel Connections in Dearing (With and without Washers). Final Report //Canadian Cold Formed Research Group Department of Civil Engineering, University of Waterloo, Waterloo, Canada, March, 2001, 33 p [21]. Сравнить результаты, полученные в программе по разным методикам, между собой и с экспериментальными данными, приведёнными в [21].

Экспериментальные образцы, которые подвергались центральному растяжению, выполнены из оцинкованной листовой стали $t_{nom} = 1,38$ мм с размерами, приведёнными на Рисунке 2.1.6. Диаметры болтов d=6,35 и 7,94 мм. Диаметры отверстий $d_0=7,94$ и 9,53 мм соответственно. Предел текучести и предел прочности стали, полученные в результате испытаний стандартных образцов, составляют $f_y=356$ МПа и $f_u=361$ МПа; $f_u / f_y=1,014$.

Испытывались по три образца каждого диаметра болтов. При этом каждый из них испытывался дважды: с шайбами под головкой и гайкой болта и без шайб.

Рисунок 2.1.6 – Размеры экспериментальных образцов [21]

Исчерпание несущей способности всех образцов происходило в результате смятия соединяемых листов. Характерный вид исчерпания несущей способности показан на Рисунке 2.1.7. За экспериментальную несущую способность принималась нагрузка, соответствующая максимуму на диаграмме работы соединения, которая записывалась в ходе каждого испытания.

Рисунок 2.1.7 - Характерный вид исчерпания несущей способности образцов с шайбами и без них [21]

Расчёт: В программе CFSteel вычислена расчётная несущая способность по критерию смятия соединяемых деталей по методикам СП 260 [1], СП 16 [2], Рекомендациям ЦНИИПроектстальконструкция [9], ЕСЗ [4,5], AISI (LRFD) [7]. В работе [21] говорится о том, что ширина листа выбрана таким образом, что она не влияет на несущую способность. Поэтому в расчёте принято сечение элемента в виде швеллера той же толщины стали с шириной исходной заготовки 50 мм и соединением первого типа с одним болтом (см. Документация к программе CFSteel. Том I Руководство пользователя [12]). Для вычисления расчётного значения по СП 260 и СП 16 учтён коэффициент надёжности по материалу $\gamma_m=1,05$, по ЕСЗ частный коэффициент $\gamma_{M2}=1,25$, а по AISI S100 коэффициент сопротивления $\phi = 0,6$. В расчёт принята расчётная толщина стали $t = t_{nom} - t_{coat}$. Результаты расчётов приведены в таблице 2.1.12.

Задание 2.1.5. В программе CFSteel выполнить расчёты растянутых элементов из работы Ведяков, И.И., Одесский, П.Д., Соловьёв, Д.В. Несущая способность болтовых соединений лёгких конструкций из холодногнутых профилей малых толщин / И.И. Ведяков, П.Д. Одесский, Д.В.Соловьёв // Промышленное и гражданское строительство, 2010.- №3.- С.19-22 [18]. Сравнить результаты, полученные в программе по разным методикам, между собой и с экспериментальными данными, приведёнными в [18].

В [18] экспериментальные образцы, которые подвергались центральному растяжению, выполнены из оцинкованной листовой стали $t_{nom} = 1,2$ и 1,5 мм с размерами, приведёнными на Рисунке 2.1.8 Диаметр болта d=10 мм подобран исходя из его несрезности. Расстояние от центра болта до кромки пластины *a* принималось равным 2*d* (20 мм) и 3*d* (30 мм). Средние пределы текучести и прочности стали, полученные в результате испытаний стандартных образцов, составляют: для стали t=1,2 мм $f_y=255$ МП*a* и $f_u=325$ МП*a*; $f_u/f_y=1,27$; для стали t=1,5 мм $f_y=245$ МП*a* и $f_u=320$ МП*a*; $f_u/f_y=1,31$. За несущую способность болтового соединения в [18] по косвенным признакам принималась нагрузка начала пластических деформаций в соединении, т.е. изменение вида кривой деформирования соединения, записываемой во время испытаний. В работе [18] указывается, что разрушение в большинстве случаев было обусловлено вырывом (срез) металла образца болтом.

Рисунок 2.1.8 – Размеры экспериментальных образцов [18]

Образец	Диаметр	N _{exp} ,]	Нормативн	ре значение	е несущей с	способнос	ти			Расчётно	е значение	несущей с	пособности		
_	болта d,	кĤ	N _{tbR}	N _{exp} /	P _{tbn} кН	N_{exp}/P_{tbn}	N _{tb,Rd}	N _{exp} /	P _{tb} кH	N_{exp}/P_{tb}	N _{tp} кН	N _{exp} / N _{tp}	N _{tp} кН	N _{exp} / N _{tp}	N _{tp} кН	N _{exp} / N _{tp}
	MM		кН	N _{tbR}	AISI		кН ЕСЗ	N _{tb,Rd}	AISI		СП 260		СП 16		цниипск	
			EC3													
1	2	3	4	5	6	7	8	9	10	11			12	13	14	15
									Без шай	б						
1-wo-sst-1/4	6,35	9,16	7,68	1,19	6,92	1,32	6,14	1,49	4,15	2,21	2,33	3,93	3,95	2,32	6,57	1,39
2-wo-sst-1/4		8,92		1,16		1,29		1,45		2,15		3,83		2,26		1,36
3-wo-sst-1/4		9,03		1,18		1,31		1,47		2,18		3,88		1,67		1,37
1-wo-sst-5/16	7,94	9,12	9,6	0,95	8,65	1,05	7,68	1,19	5,19	1,76	2,91	3,13	4,94	1,85	7,32	1,25
2-wo-sst-5/16		8,51		0,89		0,98		1,11		1,64		2,92		1,72		1,16
3-wo-sst-5/16		8,26		0,86		0,95		1,08		1,59		2,84		1,67		1,13
									С шайбам	ИИ						
1-ww-sst-1/4	6,35	12,2	7,68	1,59	9,22	1,32	6,14	1,99	5,53	2,21	2,33	5,24	3,95	3,09	6,57	1,86
2-ww-sst-1/4		12,2		1,59		1,32		1,99		2,21		5,24		3,09		1,86
3-ww-sst-1/4		11,9		1,55		1,29		1,94		2,15		5,11		3,01		1,81
1-ww-sst-5/16	7,94	14,7	9,6	1,53	11,52	1,28	7,68	1,91	6,91	2,13	2,91	5,05	4,94	2,98	7,32	2,01
2-ww-sst-5/16		12,6]	1,31		1,09]	1,64		1,82]	4,33]	2,55		1,72
3-ww-sst-5/16		12,4		1,29		1,08		1,61		1,79		4,26		2,51		1,69

Таблица 2.1.12 - Сравнение экспериментальных значений несущей способности [21] с результатами CFSteel

Таблица 2.1.13 - Сравнение экспериментальных значений несущей способности [18] с результатами CFSteel

по нормам EC3, AISI, СП 260, СП 16 и Рекомендациям ЦНИИПроектстальконструкция

Расстояние	N _{exp} ,	Нормативн	ое значение в	несущей спос	обности	Расчётное	е значение не	сущей спос	собности						
а, мм	ĸН	N _{tbR} кН	Nexp/ NtbR	Р _{tbn} кН	N_{exp}/P_{tbn}	$N_{tb\ Rd}\ \kappa H$	Nexp/ Ntb,Rd	Р _{tb} кН	N _{exp} / P _{tb}	N _{tp} кН	N _{exp} / N _{tp}	N _{tp} кН	Nexp/ Ntp	N _{tp} кН	Nexp/ Ntp
		EC3	-	AISI	-	EC3	-	AISI	-	СП 16		ЦНИИПСК		СП 260	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
						t=1,2 мм	A								
20	7,21	5,09	1,42	8,48	0,85	4,07	1,77	5,09	1,42	4,20	1,72	5,51	1,31	2,54	2,84
30	7,78	7,63	1,02	8,48	0,88	6,10	1,28	5,09	1,53	4,85	1,60	6,97	1,09	2,93	2,66
						t=1,5 мм	Л								
20	7,49	6,49	1,15	8,68	0,86	5,19	1,44	6,31	1,19	5,21	1,44	6,83	1,10	3,14	2,39
30	8,42	9,74	0,86	8,68	0,97	7,79	1,08	6,31	1,33	6,01	1,40	8,64	0,97	3,64	2,31

Расчёт: В программе CFSteel определена расчётная несущая способность по критерию смятия соединяемых деталей по методикам СП 260 [1], СП 16 [2], Рекомендациям ЦНИИПроектстальконструкция [9], ЕСЗ [4,5] и AISI S100 (LRFD) [7]. Для вычисления расчётного значения по СП 260 учтён коэффициент надёжности по материалу $\gamma_m = 1,025$, по СП 16 учтён коэффициент надёжности по материалу $\gamma_m = 1,025$, по СП 16 учтён коэффициент надёжности по материалу $\gamma_m = 1,025$, по СП 16 учтён коэффициент надёжности по материалу $\gamma_m = 1,05$, по ЕСЗ частный коэффициент $\gamma_{M2} = 1,25$, а по AISI S100 коэффициент сопротивления $\phi = 0,6$. В расчёт принята расчётная толщина стали $t = t_{nom} - t_{coat}$. Расчёт по AISI выполнялся для случая без шайб с обеих сторон. Результаты приведены в таблице 2.1.13.

Задание 2.1.6. В программе CFSteel выполнить расчёты растянутого раскоса в составе модели узла сопряжения с поясом фермы. Результаты испытаний таких моделей представлены в работе Panyanouvong M. Bearing strength of cold formed steel bolted connections in truss/thesis for the degree of master of science, University of North Texas, May 2012, 109 p. [20]. Сравнить результаты, полученные в программе с экспериментальными данными, приведёнными в [20].

Пояса и раскосы в моделях узлов ферм выполнены из холодногнутых профилей из оцинкованной стали и поперечным сечением в виде швеллера с широкими поясами. Схема испытаний приведена на Рисунке 2.1.9. Варьировались толщины стали и диаметры болтов. Толщины стали без учёта цинкового покрытия t = 0.92; 1,11; 1,43; 1,77; 2,28; 3,31 мм.

Рисунок 2.1.9 – Схема испытаний [20]

Прочностные характеристики сталей, полученные в результате испытания стандартных образцов, приведены в таблице 2.1.14

	•	A A	
Толщина стали	Предел	Предел	Отношение
без учёта	текучести f_y ,	прочности f_u ,	f_u/f_y
цинкового	МПа	МΠа	-
покрытия <i>t</i> , мм			
0,92	307,52	373,02	1,21
1,11	455,07	548,84	1,21
1,43	415,91	539,53	1,3
1,77	317,86	375,78	1,18
2,58	482,31	518,64	1,08
3,31	312,34	359,92	1,15

Таблица 2.1.14 - Прочностные характеристики сталей

Расчёт. В программе CFSteel определена расчётная несущая способность по критерию смятия соединяемых деталей растянутого раскоса. Расчёт выполнен по нормам СП 16 [2], ЕСЗ [4,5] и AISI S100 [7] для диаметра болта *12,7 мм* (ASTM 307) с отверстием диаметром *14,3 мм* в предположении отсутствия шайб. Экспериментальные данные по несущей способности,

исчерпание которой происходило в результате смятия листов стали [20], а также расчётные данные приведены в таблице 2.1.15. Характерный вид исчерпания несущей способности представлен на Рисунке 2.1.10.

Образец	Толщина	Несущая	Расчётная	P_{exp}/N_{tp}	Расчётная	P_{exp}/N_{tp}	Расчётная	P_{exp}/N_{tbRd}	Расчётная	P_{exp}/P_{tb}
	стали без	способность	несущая		несущая		несущая		несущая	
	учета	эксперимент	способность		способность по		способность		способность	
	цинкового	P_{exp} , кН	по СП 16		Рекомендациям		по EC3 N _{tb,Rd}		по AISI S100	
	покрытия		N_{tp} , κH		[9]		кН		(LRFD)	
	<i>t</i> , MM				$N_{tp}, \kappa H$				$P_{tb}, \kappa H$	
33-1/2-T1	0.02	12,764	11 207	1,14	14 512	0,88	12 9/9	0,92	10.275	1,24
33-1/2-T2	0,92	12,682	11,207	1,13	14,313	0,87	13,848	0,92	10,275	1,23
43-1/2-T1	1 1 1	14,536	10.905	0,73	25 764	0,56	26.251	0,55	10.994	0,73
43-1/2-T2	1,11	14,300	19,695	0,72	25,704	0,55	20,234	0,54	19,000	0,72
54-1/2-T1	1.42	24,98	25 106	0,99	22,620	0,77	24 000	0,72	26 156	0,94
54-1/2-T2	1,45	23,988	25,190	0,95	52,029	0,74	54,808	0,69	20,430	0,91
68-1/2-T1	1,77	31,464	21,721	1,16	28,129	1,12	30,008	1,05	22,807	1,38
68-1/2-T2		29,544		1,36		1,05		0,98		1,30
97-1/2-T1	2,58	74,46	43,698	1,70	56,589	1,32	60,369	1,23	45,883	1,62
97-1/2-T2		79,116		1,81		1,40		1,31		1,72
118-1/2-T1	3,31	85,144	38,906	2,19	50,383	1,69	53,748	1,58	40,851	2,08
118-1/2-T2		86,51		2,22]	1,72		1,61		2,12

Таблица 2.1.15 - Сравнение результатов эксперимента [20] и расчёта по CFSteel (*d* =12,7 мм)

Рисунок 2.1.10 - Характерный вид исчерпания несущей способности в результате смятия *t* =1,43 *мм* [20] (соединение без шайб)

2.2. Сжатие

2.2.1. Устойчивость сжатого элемента С-образного сечения в соответствии с СП 260.1325800.2016

Задание: Выполнить расчёт сжатого стержневого элемента С-образного сечения из Example H Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123, 2008.- 235 р. [10]. Расчётная схема элемента приведена на Рисунке 2.2.1.

Рисунок 2.2.1 – Расчётная схема элемента

Поперечное сечение приведено на Рисунке 2.2.2. Размеры сечения: h = 102 мм, t = 2 мм, b = 120 мм, c = 26 мм, r = 10 мм (внутренний). $R_{yn} = 35,5 \text{ кH/cm}^2$; $\gamma_m = 1,05$; $R_y = 33,81 \text{ кH/cm}^2$. Коэффициент условий работы принять равным $\gamma_c = 1,0$.

Расчёт элемента выполняется на усилие N = 85,7 кH, полученное в [10].

Рисунок 2.2.2 – Поперечное сечение

Граничные условия: имеются закрепления на обоих концах от перемещения из плоскости, отсутствует закрепление от депланации торцовых сечений, расчётная длина элемента при потере устойчивости по крутильной или изгибно-крутильной форме равна геометрической длине элемента.

Геометрические характеристики полного и эффективного сечений приведены в п.1.2.1.

В результате несовпадения центральных осей y - y полного и эффективного сечений возникает эксцентриситет $e_N = -0,785$ см, который необходимо учесть в расчётах. Поэтому считаем элемент как сжатый с эксцентриситетом стержень. Расчётная схема приведена на Рисунке 2.2.3.

Рисунок 2.2.3 – Расчётная схема элемента с учётом эксцентриситета

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Условие устойчивости согласно п.7.7.10.4 [1]

$$\left(\frac{N}{\varphi A_{ef} R_y \gamma_c}\right)^{0,8} + \left(\frac{e_N N}{\chi_{LT} W_{y,ef} R_y \gamma_c}\right)^{0,8}$$

$$= \left(\frac{85,7}{0,703 \cdot 4,76 \cdot 33,81 \cdot 1}\right)^{0,8} + \left(\frac{0,785 \cdot 85,7}{0,939 \cdot 12,816 \cdot 33,81 \cdot 1}\right)^{0,8} = 1,038 > 1.$$

Расчёт по п.7.7.10.3 [1]

Для сжатых с изгибом элементов должны выполняться условия:

$$\frac{N}{\varphi_y A_{ef} R_y \gamma_c} + k_{yy} \frac{e_N N}{\chi_{LT} W_{y,ef} R_y \gamma_c} \le 1$$

$$\frac{N}{\varphi_x A_{ef} R_y \gamma_c} + k_{xy} \frac{e_N N}{\chi_{LT} W_{y,ef} R_y \gamma_c} \le 1$$

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Формулы взаимодействия (п. 7.7.10.3[1])

$$\frac{85,7}{0,936 \cdot 4,76 \cdot 33,81 \cdot 1} + 1,402 \frac{0,785 \cdot 85,7}{0,939 \cdot 12,816 \cdot 33,81 \cdot 1} = 0,802 < 1,$$
$$\frac{85,7}{0,935 \cdot 4,76 \cdot 33,81 \cdot 1} + 1,402 \frac{0,785 \cdot 85,7}{0,92 \cdot 12,816 \cdot 33,81 \cdot 1} = 0,802 < 1.$$

В таблице 2.2.1 приведено сравнение результатов ручного расчёта с результатами, полученными в CFSteel.

Параметр	Обозн.	Ед. изм.	Пункт (формула) СП 260	Ручной расчёт	CFSteel	Расхо ждене, %
	Прочно	ость				
Левая часть проверки прочности элемента как сжатого с изгибом стержня	-	-	7.7.4	0,688	0,688	0
•	Устойчи	вость	•		•	•
Приведённая гибкость относительно оси <i>x</i> - <i>x</i>	$\overline{\lambda_x}$	-	7.7.8.1	1,123	1,123	0
Приведённая гибкость относительно оси <i>y</i> - <i>y</i>	$\overline{\lambda_y}$	-	7.7.8.1	1,118	1,118	0
Коэффициент устойчивости при центральном сжатии по изгибной форме	φ	-	СП 16	0,935	0,935	0
Критическая сила по Эйлеру Критическая сила по Эйлеру	$egin{array}{c} N_x \ N_y \end{array}$	кН кН		1257 1268	1257 1270	0 0,1
Критическая сила по крутильной форме потери устойчивости	$N_{cr,T}$	κН	(7.90)	253,08	253,10	0
Критическая сила по изгибно-крутильной форме потери устойчивости	$N_{cr,TF}$	κН	(7.91)	217,62	217,63	0
Максимальное значение условной гибкости по крутильной/изгибно-крутильной форме потери устойчивости	$\overline{\lambda_{FT}}$	-	(7.89)	0,860	0,860	0,1
Коэффициент устойчивости при центральном сжатии по крутильной/изгибно-крутильной форме	φ_{TF}	-	СП 16	0,703	0,703	0
Упругий критический момент потери устойчивости плоской формы изгиба	M _{cr}	кНсм	Прилож ение Г	3612	3613	0
Условная гибкость	$\overline{\lambda_{LT}}$	-	(7.96)	0,346	0,346	0
Понижающий коэффициент при потере устойчивости плоской формы изгиба	χ _{LT}	-	(7.94)	0,947	0,947	0
Понижающий коэффициент при потере устойчивости плоской формы изгиба	χ_{LT}	-	СП 16	0,939	0,939	0
Левая часть проверки устойчивости элемента	-	-	(7.101)	1,038	1,038	0
Критический момент потери устойчивости плоской формы изгиба в упругой стадии	M _{cr,0}	кНсм	Прилож ение Г	3612	3612	0,1

	Элемен	нты				
при постоянном значении изгибающего						
момента по длине элемента						
Условная гибкость при потере	$\overline{\lambda_0}$		Прилож	0,346	0,4346	0
устойчивости плоской формы изгиба при	0	-	ение В			
постоянном моменте по длине элемента						_
Предельное значение условной гибкости	$\lambda_{0,lim}$	-		0,176	0,176	0
при потере устоичивости плоскои формы						
изгиоа при постоянном моменте по длине						
Коэффициент перехода к эквивалентной	C		Таблиниа	1 016	1 016	0
прямоугольной эпоре моментов	€ <i>m</i> ,y0		B.2	1,010	1,010	Ũ
Параметр	<i>d</i>			1	1	0
Коэффициент	C_{max}	-		1 011	1 011	0
Коэффициент	$C_{m,y}$ $C_{m,LT}$	-		1,300	1,300	Ő
Параметр	μ_{v}	-	Таблициа	0.005	0.005	0
	• •		B.1	0,995	0,995	0
Параметр	μ_x	-	Таблициа	0,995	0,995	0
Memod 1 Tabu B 1 H B 2			В.1			
Коэффициент взаимолействия k	k	-	Таблициа	1.402	1.402	0
	Туу		B.1	1,102	1,102	Ũ
Коэффициент взаимодействия k_{yx}	k_{xy}	-	Таблициа	1,402	1,402	0,
П			B.1	0.000	0.000	0
Левая часть неравенства (7.99)			11././.10.3	0,802	0,802	0
левая часть неравенства (7.100)			11. / . / . 10.3	0,802	0,802	0

Результаты расчёта в программе CFSteel представлены на Рисунках 2.2.4 – 2.2.12.

Сжатие [СП260]						×
<u>Н</u> аименование элемента	Example H			Сече	ние	
<u>Д</u> лина элемента		L	1,5 M			
Расчётное усилие сжатия		N	85,7 кH			
Коэффициент приведения дли	ины относительно оси х - х	μ _x	1 ~			
Коэффициент приведения для	ины относительно оси у - у	μ _y	1 ~	E		<u> </u>
Коэффициент закрепления ко	нцов элемента от кручения	k _T	1 ~		(
Коэффициент условий работь	а элемента (устойчивость)	γ _c	1 ~			
Коэффициент условий работь	а элемента (прочность)	γ _c	1 ~			X
Критический момент потери у	стойчивости плоской формь	M _{cr}	0 кН-см			
Ослабления				Вы	брать С 102-	2-120 ECCSLipChannel
Выбрать				Сталь	6	
				Груг	ппа стандартов	EN \checkmark
Предельная гибкость				Ста	ндарт	EN 10147 ~
Предельная гибкость	λ_u 180-60*alfa \vee			Ста	ль	S350GD ~
Комментарии				Ryn	359 H/mm ²	R _{un} 420 H/MM ²
					Вычислить	Закрыть Справка

Рисунок 2.2.4 – Ввод данных

Рисунок 2.2.5 – Результаты расчёта: Общие данные

		V			D			
ющие данные	арактеристики полного сечения	характеристики эф	фективного	сечения	Результаты расчета			
Наименование :	характеристики	Обозн.	Значение	Ед.изм.				
Ллощадь попер	ечного сечения	А	7,342	CM ²				
Момент инерци	и относительно оси х - х	Ix	139,162	CM ⁴				
Иомент сопроти	ивления сечения для нижнего волокн	а W _{хн}	27,287	см ³				
Момент сопроти	ивления сечения для верхнего волок	на W _{хв}	27,287	см ³				
адиус инерци	1 относительно оси x - x	i _x	4,354	СМ		۸Y		
Иомент инерци	и относительно оси у - у	Iy	140,533	CM ⁴			1	
Иомент сопроти	ивления сечения для левого волокна	W _{ynes}	27,044	см ³		цт		
Іомент сопроті	ивления сечения для правого волокн	a W _{ynp}	20,656	см ³				
адиус инерци	и относительно оси у - у	i _y	4,375	СМ				
асстояние от л	левого волокна стенки до центра тях	кести сечени z0	5,196	СМ				
асстояние от н	нижнего волокна до центра тяжести	сечения Ү _{цт}	5,100	СМ				
Іоложение цен	тра изгиба относительно центра тяж	ести по оси Х _{ци}	-11,573	СМ				
Іоложение цен	тра изгиба относительно центра тяж	ести по оси У _{ци}	0,000	СМ				
Иомент инерци	и при свободном кручении	It	0,102933	CM ⁴				
Секториальный	й момент инерции	Iw	4728,070	см				
вес одного пого	онного метра профиля		5,97	кг/м	Да Ци			

Рисунок 2.2.6 – Результаты расчёта: Характеристики полного сечения

С Результат	ъ				
Общие данные	е Характеристики полного сечения	Характери	стики эфф	рективного	сечения
Наименование	е характеристики		Обозн.	Значение	Ед.изм.
Площадь попе	еречного сечения		A _{ef}	4,756	cm ²
Момент инерц	ции относительно оси х - х		I _{x ef}	88,730	cm ⁴
Момент сопро	тивления сечения для верхнего воло	кна	W _{xB ef}	17,398	CM ³
Момент сопро	тивления сечения для нижнего волок	кна	W _{хн ef}	17,398	CM ³
Радиус инерц	ии относительно оси х - х		i _{x ef}	4,320	CM
Момент инерц	ции относительно оси у - у		I _{y ef}	96,765	cm ⁴
Момент сопро	тивления сечения для левого волокн	a	W _{улев ef}	21,937	CM ³
Момент сопро	тивления сечения для правого волок	на	W _{ynp ef}	12,816	CM ³
Радиус инерц	ии относительно оси у - у		ⁱ yef	4,511	CM
Расстояние от	т левого волокна стенки до центра тя	яжести сечен	z _{0 ef}	4,411	CM
Расстояние от	т нижнего волокна до центра тяжести	и сечения	Ү _{цт ef}	5,100	CM

Рисунок 2.2.7 – Результаты расчёта: Характеристики эффективного сечения

Общие данные Характеристион полного сечения Характеристион зафективного сечения Ресультаты расчета Ресультаты расчета<	Результаты			-		
Проверка Расчётное неравенство Значение Пункт Расчётное прои скатии с излибои $\frac{N}{M_{pr}} R_{pr}^{-1} R$	бщие данные Характеристики полного сечения Характеристики эффективного сечени	я Результать	ы расчёта			
Расчёт на прочность при скатии с изпибон $\frac{1}{A_{x}P_{x}}, t = \frac{M_{xy}}{M_{xy}P_{xy}} < 4 \\ M_{xy}P_{xy}, t < \frac{M_{xy}}{M_{xy}P_{xy}} < 4 \\ M_{xy}P_{xy}, t < \frac{M_{xy}}{M_{xy}P_{xy}P_{xy}} < 4 \\ 0,802 < 1 < 7.7.4 \\ 0,802 < 1 < 7.7.4 \\ 0,802 < 1 < 7.7.4 \\ 0,802 < 1 < 7.7.4 \\ M_{xy}P_{xy}$	роверка	Расчётн	ое неравенство	Значение	Пункт (с	фор
Consistence designs cwartus и изгиба. Проверка по формуле взаимодействия (7.100) $\frac{(N_{t},N_{t},V_{t}$	асчёт на прочность при сжатии с изгибом	$\frac{N}{A \circ R \cdot Y_2}$ +	$\frac{Ne_N}{W_{meR}N_m} \le 1$	0,688 < 1	✓ 7.7.4	
Совнестное действие осевого скатия и изгиба. Проверка по форнуле взаимодействия (7.100)	овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.9	9) $\frac{N}{m_{e}A_{e}B_{e}Y_{e}}$	$k_{yy} \frac{\epsilon_N N}{r_T W_T + \epsilon_N N} \le$	1 0,802 < 1	✓ 7.7.10.3	3
Ресулт (1) Дит (1)	овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.1	$\frac{N}{m A \cdot R \cdot r} +$	$k_{xy} \frac{e_N N}{v_{xy} W_{xy} R_y v_z} \le$	1 0,802 < 1	✓ 7.7.10.3	3
сонстание самональная средстви сональная средства сональная сональна сональная сональная сональная сональная сональная со	овместное действие осевого сжатия и изгиба. Проверка по формуле (7.101)	$\left(\frac{N_1}{N_1}\right)^{0,3}$	$+\left(\frac{e_1 N_1}{e_1 N_1}\right)^{0,8} <$	1 1.038 > 1	× 7.7.10.4	4
проверна ликосни зленента Ри, 5 К. 145,6 V. 10.4 Козарствие скезого сжатия и изгиба. Проверка по формуле взаимодействия (7.99) Совиестное севое услике скатия Баранетр Паранетр Обозн. Значение Ед.изн. Пункт (формула) СП Паранетр Обозн. Значение Ед.изн. Пункт (формула) СП Паранетр Обозн. Значение Ед.изн. Пункт (формула) СП Расчётное осевое услике скатия N 85,700 H 7.2.3 Площадь зффективного сечения Aget 4,756 or 2 7.2.3 Расчётное дийстивного сечения L 1,500 H Расчётная длина отноительно оси x - x Igét, 1,500 H Расчётная длина отноительно оси x - x Igét, 1,120 H Расчётная длина отноительно оси x - x X _x 1,123 7.7.8.1 Приведённая гибкость отноительно оси x - x X _x 1,123 7.7.8.1 Приведённая гибкость отноительно оси x - x X _x 0,935 7.7.8.1 Приведённая гибкость отноительно оси x - x X _x 0,935 7.7.8.1		$\langle \varphi A_{1ef} R_y \gamma_c \rangle$	$\chi_{LT} W_{1y0ef} R_y \gamma_c / =$		10.4	
Совиестное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия 06034. Значение Ед. изи. Пункт (формула) СП Заранетр 06034. Значение Ед. изи. Пункт (формула) СП Зараситиро осевое усилие скатия N 85,700 кН 7.7.2.3 Закцентриситет ем. 0.705 см. 7.7.2.3 Пощадь зффективного сечения А _{eff} 4,75 см. 7.7.2.3 Расчётнов длина эленента L 1,500 н 1.000 1.000 Расчётная длина относительно оси х - х ge/s 1,500 н 1.000 1.000 Расчётная длина относительно оси х - х ge/s 1,500 н 1.000 1.000 Расчётная длина относительно оси х - х ge/s 1,500 н 1.0000 1.000 1.000	роверка гиокости элемента	Λ	max ≤ Λ _u	34,5 < 145,8	✓ 10.4	
Совесствое срействие осевого сжатия и изгиба. Проверка по формуле взаимодействия Совесствое действие осевого сжатия Приест (формула) СП Таранетр Обож. Значение Ед.изм. Пунст (формула) СП Расчётное осевое усилие скатия N 85,700 кH 7.7.2.3 Плащадь зффективного сечения Agé 4,756 or² 7.7.2.3 Плащадь зффективного сечения N 85,700 kH 7.7.2.3 Засчётный монент сопротивления сечения L 1,500 m N 12,816 or³ Совенстине сопротивления сечения L 1,500 m N 1 Расчётный лина относительно оси x - x Lefk 1,500 m N 1 Расчётная длина относительно оси x - x Lefk 1,500 m N 1 Расчётная длина относительно оси x - x Kx 1,118 m 7.7.8.1 Приведённая гибкость относительно оси x - x Kx 1,118 m 7.7.8.1 Сорфициент устой-ивости относительно оси x - x Ky 1,018 m 7.7.8.1 Совфициент устой-ивости относительно оси x - x Ky 1,018 m 7.7.8.1	s and the second se					
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействи/ (7.9) Обози. Значенетр Собози. Значенетр Собози. Значенетр Ср. или Пункт (формула) СП Засчётное осевое усилие скатия N 85,700 кH 7.7.2.3 Эксцентрикитет е _N 4,755 ord 7.7.2.3 Тлошадь эффективного сечения Куеб 12,816 ord 7.7.2.3 Расчётный момент сопротивления сечения Куеб 12,816 ord 7.7.2.3 "еометрическая длина элемента L 1,800 M 1.000 "асчётная длина относительно оси x - x Iefs 1,500 M 7.7.8.1 "риведённая гибкость относительно оси x - x K 1,123 7.7.8.1 7.7.8.1 (ривая потери устойчивости относительно оси x - x K 1,123 7.7.8.1 7.7.8.1 (ривая потери устойчивости относительно оси x - x K 1,123 7.7.8.1 7.7.8.1 (ривая потери устойчивости проистельно оси y - y K 1,025 7.7.8.1 7.7.8.1						
Таранетр Обозн. Эначение Ед.изи. Пункт (формула) СП Расчётное осевое усилие скатия N 85,70 кН Расчётное осевое усилие скатия e _N -0,783 см 7.7.2.3 Экщентрикитет e _N 4,755 ch ² 7.7.2.3 Тлошадь эффективного сечения Myef 12,816 ch ² Расчётный момент сопротивления сечения Myef 12,816 ch ³ Расчётная длина относительно оси x - x lefx 1,500 M Расчётная длина относительно оси x - x lefy 1,500 M Расчётная длина относительно оси x - x lefy 1,150 M Расчётная длина относительно оси x - x k _X 1,1123 7.7.8.1 Приведённая гибкость относительно оси x - x k _X 0,913 7.7.8.1 Сорффициент устойчивости приоительно оси y - y k _X 0,913 7.7.8.1 Сорффициент устойчивос	овместное действие осевого сжатия и изгиба. Проверка по формуле взаимоде	ействия (7.99)			
Расчётное осевое усилие скатия N 85,700 кH Эксцентриситет e _N 0-785 cit 7.7.2.3 Площадь эффективного сечения A _{ef} 4,756 cit ² Расчётный номент сопротивления сечения W _{yef} 12,816 cit ³ Расчётный номент сопротивления сечения L 1,500 M Расчётная длина элемента L 1,500 M Расчётная длина относительно оси x - x Iefx 1,500 M Расчётная длина относительно оси x - x Iefx 1,500 M Расчётная длина относительно оси x - x Iefx 1,123 7.7.8.1 Приведённая гибкость относительно оси x - x X 1,118 7.7.8.1 Приведённая гибкость относительно оси x - x Ky 0,935 7.7.8.1 Коривая потери устойчивости при центральном скатии ϕ_x 0,935 7.7.8.1 Коаффициент устойчивости при центральном скатии ϕ_y 0,935 7.7.8.1 Коаффициент устойчивости при центральном скатии ϕ_y 0,935 7.7.8.1 Коаффициент устойчивости	араметр	Обозн.	Значение Ед.	изм. Пункт (фо	рмула) СП 26	60
Эксцентриситет е _N -0,785 см 7.7.2.3 Площадь эффективного сечения A _{ef} 4,756 cm ² Эасчётный момент сопротивления сечения W _{yef} 12,816 cm ³ Расчётный момент сопротивления сечения L 1,500 н Расчётная длина относительно оси х - х lefx 1,500 н Расчётная длина относительно оси х - х lefy 1,500 н Расчётная длина относительно оси х - х lefy 1,500 н Расчётная длина относительно оси х - х lefy 1,500 н Расчётная лийкость относительно оси х - х lefy 1,123 7.7.8.1 Приведённая гибкость относительно оси х - х K _x 1,118 7.7.8.1 Сривая потери устойчивости относительно оси х - х b 7.7.8.1 Созффициент устойчивости при центральном скатии φ _x 0,935 7.7.8.1 Созффициент устойчивости при центральном скатии φ _x 0,935 7.7.8.1 Созффициент устойчивости при центральном скатии φ _x 0,935 7.7.8.1 Сритическая сила для крутильной формы потери устойчивости м _c 7.7.8.1 <t< td=""><td>асчётное осевое усилие сжатия</td><td>Ν</td><td>85,700 кH</td><td></td><td></td><td></td></t<>	асчётное осевое усилие сжатия	Ν	85,700 кH			
Площадь эффективного сечения A _{ef} 4,756 сн ² Расчётный момент сопротивления сечения W _{yef} 12,816 сн ³ 1 Расчётный момент сопротивления сечения L 1,500 м 1 Расчётныя длина элемента L 1,500 м 1 Расчётная длина относительно оси х - х lefx 1,500 м 1 Расчётная длина относительно оси х - х lefy 1,500 м 1 Расчётная длина относительно оси х - х k 1,123 M 7.7.8.1 Приведённая гибкость относительно оси х - х K _x 1,118 M 7.7.8.1 Приведённая гибкость относительно оси х - х K _x 1,118 M 7.7.8.1 Сривая потери устойчивости относительно оси х - х K _y 0,935 M 7.7.8.1 Совфициент устойчивости относительно оси х - х M M 7.7.8.1 Совфициент устойчивости при центральном скатии φ _x 0,935 M 7.7.8.1 Совфициент устойчивости при центральном скатии φ _y 0,935 M 7.7.8.1 Совфициент устойчивости при центральном скатии φ _y 3612,940 KH 7.7.8.1 Совфициент устойчивости плоской формы изгиба в упругой стадии M _c <	ксцентриситет	e _N	-0,785 см	7.7.2.3		
Расчётный момент сопротивления сечения W _{yef} 12,816 см ³ Геометрическая длина элемента L 1,500 н Расчётная длина относительно оси х - х lefx 1,500 м Расчётная длина относительно оси х - х lefy 1,500 м Расчётная длина относительно оси х - х lefy 1,500 м Расчётная длина относительно оси х - х k 1,123 7.7.8.1 Приведённая гибкость относительно оси х - х k 1,118 7.7.8.1 Приведённая гибкость относительно оси х - х k b 7.7.8.1 Сривая потери устойчивости относительно оси х - х k b 7.7.8.1 Сривая потери устойчивости относительно оси х - х k b 7.7.8.1 Сривая потери устойчивости при центральном скатии φx 0,935 7.7.8.1 Созффициент устойчивости при центральном скатии φx 0,935 7.7.8.1 Козффициент устойчивости при центральном скатии w y 0,935 7.7.8.1 Сритическая сила для крутильной формы потери устойчивости N _c T 217,635 kH<	Ілощадь эффективного сечения	A _{ef}	4,756 cm ²			
геометрическая длина элемента L 1,500 м N Расчётная длина относительно оси х - х Iefx 1,500 м N Расчётная длина относительно оси у - у Iefy 1,500 м N Расчётная длина относительно оси у - у Iefy 1,500 м N Расчётная длина при крутильной форме потери устойчивости Iefy 1,100 м N Приведённая пибкость относительно оси х - х X _x 1,103 M 7.7.8.1 Приведённая пибкость относительно оси х - х X _y 1,103 M 7.7.8.1 Кривая потери устойчивости относительно оси х - х M X 7.7.8.1 Коривая потери устойчивости относительно оси х - х M X 7.7.8.1 Коривая потери устойчивости относительно оси х - х M X 7.7.8.1 Коривая потери устойчивости относительно оси х - х M X 7.7.8.1 Коривая потери устойчивости относительно оси х - х M X 7.7.8.1 Коривая потери устойчивости относительно оси х - х M X 7.7.8.1 Корифициент устойчивости плоской формы потери устойчивости M X 7.7.8.1 Коритическая сила для изгибно-крутильной формы потери	асчётный момент сопротивления сечения	Wyef	12,816 cm ³			
касчётная длина относительно оси х - х I I N Расчётная длина относительно оси у - у I I I N Расчётная длина относительно оси у - у I I N I Расчётная длина при крутильной форме потери устойчивости I I I N Приведённая гибкость относительно оси х - х N I I 7.7.8.1 Приведённая гибкость относительно оси х - х N I I 7.7.8.1 Приведённая гибкость относительно оси х - х N I I 7.7.8.1 Кривая потери устойчивости относительно оси х - х I I I I I Коривая потери устойчивости относительно оси х - х I <tdi< td=""><td>еометрическая длина элемента</td><td>L</td><td>1,500 M</td><td></td><td></td><td></td></tdi<>	еометрическая длина элемента	L	1,500 M			
Расчётная длина относительно оси у - у I I I I Расчётная длина при крутильной форме потери устойчивости LoT 1,500 M Приведённая гибкость относительно оси x - x $\overline{\Lambda_x}$ 1,123 7.7.8.1 Приведённая гибкость относительно оси x - x $\overline{\Lambda_y}$ 1,118 7.7.8.1 Приведённая гибкость относительно оси x - x $\overline{\Lambda_y}$ 1,118 7.7.8.1 Кривая потери устойчивости относительно оси x - x $\overline{\Lambda_y}$ 0,935 7.7.8.1 Коривая потери устойчивости пли центральном скатии φ_x 0,935 7.7.8.1 Коэффициент устойчивости при центральном скатии φ_x 0,936 7.7.8.1 Коэффициент устойчивости при центральном скатии φ_x 0,936 7.7.8.1 Критическая сила для крутильной формы потери устойчивости N_{crT} 217,635 KH 7.7.8.1 Критическая сила для изгибно-крутильной формы потери устойчивости N_{crT} 217,635 KH 7.7.8.1 Критическая сила для изгибно-крутильной формы изгиба в упругой стадии M_{crT} 0,344 7.7.9.2 Критическая пла для изгибно-крутильной формы изгиба в	асчётная длина относительно оси х - х	l _{efx}	1,500 M			
Расчётная длина при крутильной форме потери устойчивости L _{oT} 1,500 м Приведённая гибкость относительно оси х - х $\overline{\Lambda_x}$ 1,123 7.7.8.1 Приведённая гибкость относительно оси х - х $\overline{\Lambda_y}$ 1,118 7.7.8.1 Кривая потери устойчивости относительно оси х - х b 7.7.8.1 Кривая потери устойчивости относительно оси х - х b 7.7.8.1 Коэффициент устойчивости относительно оси у - у b 7.7.8.1 Коэффициент устойчивости при центральном скатии ϕ_x 0,935 7.7.8.1 Коэффициент устойчивости при центральном скатии ϕ_y 0,935 7.7.8.1 Коритическая сила для крутильной формы потери устойчивости N_{oT} 253,097 kH 7.7.8.1 Критическая сила для изгибно-крутильной формы потери устойчивости N_{oT} 3612,940 kH col 7.7.8.1 Критическая сила для изгибно-крутильной формы изгиба в упругой стадии N_{oT} 3612,940 kH col 7.7.9.2 Кривая потери устойчивости плоской формы изгиба N_{oT} 0,939 7.7.9.2 7.7.9.2 Поникающий коэффицие	асчётная длина относительно оси у - у	I _{efy}	1,500 M			
Приведённая пибкость относительно оси х - х $\overline{\lambda_x}$ 1,123 7.7.8.1 Приведённая пибкость относительно оси у - у $\overline{\lambda_y}$ 1,118 7.7.8.1 Сривая потери устойчивости относительно оси х - х b 7.7.8.1 Сривая потери устойчивости относительно оси х - х b 7.7.8.1 Сривая потери устойчивости относительно оси х - х b 7.7.8.1 Соэффициент устойчивости относительно оси х - х 7.7.8.1 Соэффициент устойчивости относительно оси х - х 7.7.8.1 Соэффициент устойчивости при центральном скатии ϕ_x 0.935 7.7.8.1 Соэффициент устойчивости при центральном скатии ϕ_y 0.936 7.7.8.1 Сритическая сила для крутильной формы потери устойчивости N_{oTF} 217.655 kH 7.7.8.1 Сритическая пла для изгибно-крутильной формы изгиба в упругой стадии M_{oT} 3612.949 kH cm 1.010000000000000000000000000000000000	асчётная длина при крутильной форме потери устойчивости	L _{orT}	1,500 M			
Приведённая пибкость относительно оси у - у	риведённая гибкость относительно оси х - х	$\overline{\lambda_x}$	1,123	7.7.8.1		
Кривая потери устойчивости относительно оси х - х Image: model in the image: model in	риведённая гибкость относительно оси у - у	$\overline{\lambda_y}$	1,118	7.7.8.1		
Кривая потери устойчивости относительно оси у - у Image: first state in the state	ривая потери устойчивости относительно оси х - х		b	7.7.8.1		
Коэффициент устойчивости при центральном сжатии Фx 0,935 7.7.8.1 Коэффициент устойчивости при центральном сжатии Фy 0,936 7.7.8.1 Коэффициент устойчивости при центральном сжатии Фy 0,936 7.7.8.1 Критическая сила для крутильной формы потери устойчивости Nort 253,097 кH 7.7.8.4 Критическая сила для изгибно-крутильной формы потери устойчивости Nort 217,635 кH 7.7.8.5 Критическая сила для изгибно-крутильной формы потери устойчивости Nort 217,635 кH 7.7.8.5 Критическая сила для изгибно-крутильной формы потери устойчивости Nort 217,635 кH 7.7.8.5 Критическай момент потери устойчивости плоской формы изгиба в упругой стадии Mort 3612,940 кH-см Приложение Г Условная пибкость при потеря устойчивости плоской формы изгиба) Г 0,346 7.7.9.2 Понижающий коэффициент при потеря устойчивости плоской формы изгиба) К 0 7.7.9.2 Истод определения коэффициент в из потере устойчивости плоской формы изгиба ка 1 1 Коэффициент взаимодействия К 1,402	ривая потери устойчивости относительно оси у - у		b	7.7.8.1		
Коэффициент устойчивости при центральном сжатии Фу 0,936 7.7.8.1 Критическая сила для крутильной формы потери устойчивости N _{oT} 253,097 кH 7.7.8.4 Критическая сила для крутильной формы потери устойчивости N _{oT} 217,635 кH 7.7.8.5 Критическая сила для изгибно-крутильной формы потери устойчивости N _{oT} 3612,940 кH 7.7.8.5 Критический момент потери устойчивости плоской формы изгиба в упругой стадии M _{oT} 3612,940 кH Приложение Г Условная гибкость при потере устойчивости плоской формы изгиба К _L 0,346 7.7.9.2 Критический коэффициент при потере устойчивости плоской формы изгиба K _L 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба K _L 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба K _L 0,939 7.7.9.2 Кор фициент в взаимодействия К 1 1 1	оэффициент устойчивости при центральном сжатии	φ _x	0,935	7.7.8.1		
Критическая сила для крутильной формы потери устойчивости N _{ort} 253,097 кH 7.7.8.4 Критическая сила для изгибно-крутильной формы потери устойчивости N _{ort} 217,635 кH 7.7.8.5 Критическая сила для изгибно-крутильной формы потери устойчивости N _{ort} 217,635 кH 7.7.8.5 Критический момент потери устойчивости плоской формы изгиба в упругой стадии M _{or} 3612,940 кH-cm Приложение Г Условная гибкость при потере устойчивости плоской формы изгиба $\overline{\Lambda_{LT}}$ 0,346 7.7.9.2 Критический коэффициент при потеря устойчивости плоской формы изгиба $\overline{\Lambda_{LT}}$ 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Метод определения коэффициент в взаимодействия κ 1 1 1	оэффициент устойчивости при центральном сжатии	Φγ	0,936	7.7.8.1		
Критическая сила для изгибно-крутильной формы потери устойчивости N _{oTF} 217,635 кH 7.7.8.5 Критическая сила для изгибно-крутильной формы потери устойчивости M _{oT} 3612,940 кH·см Приложение Г Критический момент потери устойчивости плоской формы изгиба в упругой стадии M _{or} 3612,940 кH·см Приложение Г Условная гибкость при потере устойчивости плоской формы изгиба $\overline{\Lambda_{LT}}$ 0,346 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Коэффициент взаимодействия κ 1,402 κ κ	ритическая сила для крутильной формы потери устойчивости	N _{crT}	253,097 кН	7.7.8.4		
Критический момент потери устойчивости плоской формы изгиба в упругой стадии М _{от} 3612,940 КН-см Приложение Г Условная гибкость при потере устойчивости плоской формы изгиба $\overline{\lambda}_{LT}$ 0,346 7.7.9.2 Кривая потери устойчивости (потеря устойчивости плоской формы изгиба) b 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба χ_{LT} 0,939 7.7.9.2 Коэффициент взаимодействия k 1,402	ритическая сила для изгибно-крутильной формы потери устойчивости	N _{crTF}	217,635 кН	7.7.8.5		
Условная гибкость при потере устойчивости плоской формы изгиба \$\bar{L}{L}\$ 0,346 7.7.9.2 Сривая потери устойчивости (потеря устойчивости плоской формы изгиба) b 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба \$\bar{L}_{L}\$ 0,939 7.7.9.2 Метод определения коэффициентов взаимодействия 1 1 1 1 Коэффициент взаимодействия \$\bar{L}\$ 1,402 1 1	ритический момент потери устойчивости плоской формы изгиба в упругой стадии	M _{cr}	3612,940 кН ч	т Приложен	ие Г	
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба) b 7.7.9.2 Понижающий коэффициент при потере устойчивости плоской формы изгиба X _{LT} 0,939 7.7.9.2 Метод определения коэффициентов взаимодействия 1 1 1 Коэффициент взаимодействия k 1,402 2	словная гибкость при потере устойчивости плоской формы изгиба	λ_{LT}	0,346	7.7.9.2		
Понижающий коэффициент при потере устойчивости плоской формы изгиба XLT 0,939 7.7.9.2 Метод определения коэффициентов взаимодействия 1 1 Коэффициент взаимодействия 1 1	ривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2		
Метод определения коэффициентов взаимодействия 1 Коэффициент взаимодействия k 1,402	юнижающий коэффициент при потере устойчивости плоской формы изгиба	X _{LT}	0,939	7.7.9.2		
Коэффициент взаимодействия k 1,402	етод определения коэффициентов взаимодействия		1			
	оэффициент взаимодействия	k	1,402			
Расчётное сопротивление стали R _V 338 H/мм ²	асчётное сопротивление стали	Rv	338 H/m	²		

С Результаты				—		1
Общие данные Характеристики полного сечения Характеристики эффективного сечения	Результаты ра	счёта				
Проверка	Расчётное н	неравенство	Зна	чение	Пун	кт (ф ор
Расчёт на прочность при сжатии с изгибом	$\frac{N}{A_{ad}R_{u}Y_{a}} + \frac{N}{W_{u}}$	$\frac{Ve_N}{eR_V v_s} \le 1$	0,68	88 < 1	✓ 7.7.	.4
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{m A B m} + k_{yy}$	$\frac{e_N N}{m W - P m} \leq 1$	1 0,80	02 < 1	√ 7.7.	. 10.3
	$\varphi_{y}A_{ef}R_{y}\gamma_{c}$	XLT Wy, af KyYc B _N N	1 0.90	12 < 1	1	10.2
Совместное деиствие осевого сжатия и изгиоа. Проверка по формуле взаимодеиствия (7,100)	$\varphi_x A_{ef} R_y \gamma_c$	$\chi_{LT} W_{y,af} R_{y\gamma_c} \ge$	- 0,80	JZ < 1	• 7.7.	.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле (7.101)	$\left(\frac{N_1}{\varphi A_{1ef}R_{\gamma}\gamma_c}\right) + \left(\frac{1}{\chi_1}\right)$	$\frac{e_1 N_1}{\pi W_{1y0ar}R_y\gamma_c} \le$	1 1,03	38 > 1	× 7.7	.10.4
Проверка гибкости элемента	λ _{max}	≤ λ _u	34,5	< 145,8	✓ 10	4
<						
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (7.100)					
Параметр	Обозн.	Значение В	д.изм.	Пункт (с	бормул	ia) СП 2
Расчётное осевое усилие сжатия	N	85,700 k	Η			
Эксцентриситет	e _N	-0,785 c	м	7.7.2.3		
Площадь эффективного сечения	A _{ef}	4,756 c	м ²			
Расчётный момент сопротивления сечения	Wvef	12,816	м ³			
Геометрическая длина элемента	Ľ	1,500 м	1			
Расчётная длина относительно оси х - х	l _{efx}	1,500 м	1			
Расчётная длина относительно оси у - у	l _{efy}	1,500 м	1			
Расчётная длина при крутильной форме потери устойчивости	L _{oT}	1,500 м	1			
Приведённая гибкость относительно оси х - х	$\overline{\lambda_x}$	1,123		7.7.8.1		
Приведённая гибкость относительно оси у - у	λy	1,118		7.7.8.1		
Кривая потери устойчивости относительно оси х - х		b		7.7.8.1		
Кривая потери устойчивости относительно оси у - у		b		7.7.8.1		
Коэффициент устойчивости при центральном сжатии	φ _x	0,935		7.7.8.1		
Коэффициент устойчивости при центральном скатии	Φγ	0,936		7.7.8.1		
Критическая сила для крутильной формы потери устойчивости	N _{crT}	253,097 k	Η	7.7.8.4		
Критическая сила для изгибно-крутильной формы потери устойчивости	N _{crTF}	217,635 k	tΗ	7.7.8.5	-	
Критическии момент потери устоичивости плоскои формы изгива в упругои стадии	M _{cr}	3612,940 k	Н∙см	Приложе	ение I	
условная нискость при потере устоичивости плоской формы изгира	^LT	0,346		7.7.9.2		
приважно тери устоичивости (потеря устоичивости плоской формы изгиба)		0.930		7702		
полижающий коэффицијент при потере устоичирости плоскои формонизниов	XLT	0,939		1.1.2.2		
Метол определения коэффициентов взаимодеиствия		1,402				
Метод определения коэффициентов взаимодеиствия Коэффициент взаимодействия	k					
Метод определения коэффициентов взаимодеиствия Коэффициент взаимодействия Расчётное сопротивление стали	k R	338 H	1/mm ²			

С Результаты					_		×
Общие данные Характеристики полного сечения	Характеристики эффективного сечения	Результаты ра	счёта				
Проверка		Расчётное	неравенств	э Зна	чение	Пункт	(форму
Расчёт на прочность при сжатии с изгибом		$\frac{N}{A_{ef}R_y\gamma_c} + \frac{N}{W_y}$	$\frac{Ne_N}{e_f R_y \gamma_c} \le 1$	0,6	88 < 1	7.7.4	
Совместное действие осевого сжатия и изгиба. Про	оверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_y A_{ef} R_y \gamma_c} + k_{yy}$	$\frac{e_N N}{\chi_{LT} W_{y,ef} R_y \gamma_c}$	1 0,8	02 < 1	7.7.10.	3
Совместное действие осевого сжатия и изгиба. Про	оверка по формуле взаимодействия (7.100)	$\frac{N}{\varphi_x A_{ef} R_y \gamma_c} + k_{xy}$	$\frac{e_N N}{\chi_{LT} W_{V,ef} R_V \gamma_c}$	<u>1 0,8</u>	02 < 1	7.7.10.	3
Совместное действие осевого сжатия и изгиба. Про	оверка по формуле (7.101)	$\left(\frac{N_1}{\varphi A_{14f}R_y\gamma_c}\right)^{0,3} + \left(\frac{N_1}{\chi_1}\right)^{0,3}$	$\left(\frac{e_1 N_1}{v_{1y0af} R_y \gamma_c}\right)^{0.8}$	≤1 1,0	38 > 1	× 7.7.10.	4
Проверка гибкости элемента		λ _{max}	≤ λ _u	34,5	< 145,8	10.4	
<							>
Совместное действие осевого сжатия и изги	ба. Проверка по формуле (7.101)						
Параметр		Обозн.	Значение	Ед.изм.	Пункт (ф	ормула) (CT 260
Расчётное усилие сжатия		N	85,700	кН			
Эксцентриситет		e _N	0,785	CM	7.7.2.3		
Площадь эффективного сечения		A _{ef}	4,756	CM ²			
Расчётный момент сопротивления сечения		Wyef	12,816	CM3			
Понижающий коэффициент		φ	0,703				
Понижающий коэффициент при потере устойчивос	ти плоской формы изгиба	X _{min}	0,939		7.7.9.2		
Расчётное сопротивление стали по пределу текуче	ести	Ry	338	H/mm ²			
Коэффициент условий работы элемента		۲ _c	1				
			Excel		Закрыть	Спр	авка

Рисунок 2.2.8 – Результаты расчёта: Проверки

Delta Engineering Software	CFSteel 4.3	страница 1
http://www.CFSteel.ru	User	
mailto:deltaing@mail.ru	CI1260	14.04.2022
Example H		
Расчетное усилие сжатия	N	85,700 ĸH
Длина элемента	L	1,500 M
Коэффициент приведения длины относительно оси х - х	μ _x	1
Коэффициент приведения длины относительно оси у - у	μγ	1
Коэффициент приведения длины (кручение)	k _T	1
Коэффициент условий работы элемента (устойчивость)	Yc	1
Коэффициент условий работы элемента (прочность)	Yc	1
Предельная гибкость	λ	145,8
Сечение		
C 102-2-120		
ECCSLipChannel		
brz	h	102,0 мм
	t	2,0 мм
	b _{f1}	120,0 мм
	b _{t2}	120,0 мм
	c ₁	26,0 мм
n	c ₂	26,0 MM
	α1	90,0 °
	α2	90,0 °
C₁ C₁	r	10,0 мм
	t _{coat}	0,00 mm
Сталь		
Группа стандартов		EN
Стандарт		EN 10147
Сталь		\$350G D
Нормативное сопротивление стали по пределу текучести	Ryn	355 H/MM*
Нормативное сопртивление стали по пределу прочности	Run	420 H/mm ²
Модуль упругости	E	206000 H/мм ²
Коэффициент Пуассона	v	0,3
Коэффициент надёжности по материалу	Ym	1,05

Рисунок 2.2.9 – Результаты расчёта, представленные в Microsoft Excel[®]: Исходные данные

	Delta Engineering Software	CFSteel 4.3	страница 2
	http://www.CFSteel.ru	User	
0	mailto:deltaing@mail.ru	CT 260	14.04.2022
Example H			

C 102-2-120 ECCSLipChannel

Характеристики полного сечения

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A	7,342 см ²
Момент инерции относительно оси х - х	l _x	139,162 см ⁴
Момент сопротивления сечения для нижнего волокна	W _{xs}	27,287 _{см} ³
Момент сопротивления сечения для верхнего волокна	W _{xii}	27,287 см ³
Радиус инерции относительно оси х - х	i,	4,354 см
Момент инерции относительно оси у - у	$I_{\rm y}$	140,533 см ⁴
Момент сопротивления сечения для левого волокна	Wyrea	27,044 см ³
Момент сопротивления сечения для правого волокна	Wynp	20,656 см ³
Радиус инерции относительно оси у - у	i,	4,375 см
Расстояние от левого волокна стенки до центра тяжести сечения	zO	5,196 см
Расстояние от нижнего волокна до центра тяжести сечения	Y _{ut}	5,100 см
Положение центра изгиба относительно центра тяжести по оси х - х	X _{un}	-11,573 см
Положение центра изгиба относительно центра тяжести по оси у - у	Yum	0,000 см
Момент инерции при свободном кручении	\mathbf{I}_{t}	0,102933 cm ⁴
Секториальный момент инерции	I_w	4728,070 см ⁶
Вес одного погонного метра профиля		5,97 кг/м

Рисунок 2.2.10 – Результаты расчёта, представленные в Microsoft Excel[®]: *Геометрические характеристики полнго сечения*
Delta Engineering Software	CFSteel	4.3	страница З
http://www.CFSteel.ru	User		
mailto:deltaing@mail.ru	СП260		14.04.2022
Example H			
C 102-2-120 ECCSLipChannel			
Характеристики эффективного сечения			
4 Y			
			-
			-
			X _
			-
			_
			-
		_	-
Наименование характеристики	Обозн.	значение	ЕД.ИЗМ.
Площадь поперечного сечения	A _{ef}	4,756	CM ²
Момент инерции относительно оси х - х	Ixef	88,730	см⁴
Момент сопротивления сечения для верхнего волокна	W _{xn ef}	17,398	CM3
Момент сопротивления сечения для нижнего волокна	W _{xH ef}	17,398	CM3
Радиус инерции относительно оси х - х	İ _{xef}	4,320	см
Момент инерции относительно оси у - у	I _{y ef}	96,765	CM ⁴
Момент сопротивления сечения для левого волокна	W _{ynea ef}	21,937	CM3
Момент сопротивления сечения для правого волокна	W _{ynp ef}	12,816	CM3
Радиус инерции относительно оси у - у	İ _{y ef}	4,511	см
Расстояние от левого волокна стенки до центра тяжести сечения	Z _{0 ef}	4,411	см
Расстояние от нижнего волокна до центра тяжести	Yuref	5,100	см

Рисунок 2.2.11 – Результаты расчёта, представленные в Microsoft Excel[®]: *Геометрические характеристики эффективного сечения*

r	Delta Engineering Software		CFSteel 4.3		страница 4		
6	mailto:deltaing@mail.ru		CII260		14.04.2022		
Example	н						
	Проверка	Расчётное неравенство	Значение		Пункт (формула) СП 260		
Расчёт на изгибом	а прочность при сжатии с	$\frac{N}{A_{af}R_{y}\gamma_{c}} + \frac{Na_{N}}{W_{yaf}R_{y}\gamma_{c}} \leq 1$	0,688 < 1	×	7.7.4		
Совместн и изгиба. взаимоде	юе действие осевого сжатия Проверка по формуле ействия (7.99)	$\frac{N}{\varphi_{\mathcal{T}}\mathcal{A}_{ef}\mathcal{R}_{\mathcal{T}}\gamma_{c}} + k_{\mathcal{T}\mathcal{T}}\frac{e_{\mathcal{T}}N}{\mathcal{I}\omega^{*}\mathcal{W}_{\mathcal{T}\mathcal{A}\mathcal{T}}\mathcal{R}_{\mathcal{T}}\gamma_{c}} \leq 1$	0,802 < 1	~	7.7.10.3		
Совместн и изгиба. взаимоде	юе действие осевого сжатия Проверка по формуле ействия (7.100)	$\frac{N}{\varphi_2 A_{4f} R_y \gamma_c} + k_{2y} \frac{e_N N}{\chi_{LF} W_{YAf} R_y \gamma_c} \leq 1$	0,802 < 1	~	7.7.10.3		
Совместн и изгиба.	юе действие осевого сжатия Проверка по формуле (7.101)	$\left(\frac{N_k}{g^{p,l} \iota_{ij} \pi_j T_p}\right)^{0,1} + \left(\frac{\sigma_k N_k}{\mathcal{X} \iota r^{\mathcal{W}_{ij}} \sigma_{ij} \pi_j T_p}\right)^{0,1} \leq 1$	1,038 > 1	×	7.7.10.4		
Проверка	а гибкости элемента	$\lambda_{max} \le \lambda_u$	34,5 < 145,8	×	10.4		
Расчёт на прочность при сжатии с изгибом							
Параметр	2	Обозн.	Значение Ед	ц.изм.	Пункт (формула) СП 260		
Расчётно	е усилие сжатия	N	85,700 ĸH	ł			

			CII 260
Расчётное усилие сжатия	N	85,700 ĸH	
Эксцентриситет	e _N	0,785 см	7.7.2.3
Площадь эффективного сечения	A _{cf}	4,756 cm ²	
Расчётный момент сопротивления	w.	12.816 cm ³	774
сечения	** yet	12,010 CM	7.7.4
Расчётное сопротивление стали по	P	338 µ/ ²	
пределу текучести	ny .	556 H/MM	
Коэффициент условий работы	V.	1	
элемента	¥C.	-	

Совместное действие осевого сжатия и изгиба. Проверка по формуле (7.99)						
Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) СП 260			
Расчётное осевое усилие сжатия	N	85,700 ĸH				
Эксцентриситет	e _N	0,785 см	7.7.2.3			
Площадь эффективного сечения	A _{ef}	4,756 cm ²				
Расчётный момент сопротивления сечения	Wyef	12,816 _{см} ³				
Геометрическая длина элемента	L	1,500 M				
Расчётная длина относительно оси x - x	I _{efx}	1,500 M				

Рисунок 2.2.12,а – Результаты расчёта, представленные в Microsoft Excel[®]: Проверки (начало)

Расчётная длина относительно оси у - у	l _{efy}	1,500 м	
Расчётная длина при крутильной			
форме потери устойчивости	Lot	1,500 M	
Приведённая гибкость относительно	-	4.495	
осих - х	۸ _×	1,123	7.7.8.1
Приведённая гибкость относительно	Ŧ	1 1 1 0	77.04
оси у - у	Ny	1,118	7.7.8.1
Кривая потери устойчивости			77.01
относительно оси х - х		D	7.7.8.1
Кривая потери устойчивости			7701
относительно оси у - у		D	7.7.8.1
Коэффициент устойчивости при	(D)	0.925	7781
центральном сжатии	Ψχ	0,555	7.7.0.1
Коэффициент устойчивости при	(7)	0.925	7791
центральном сжатии	Ψγ	0,550	7.7.0.1
Критическая сила для крутильной	Ν	252.097	7704
формы потери устойчивости	NorT	255,097 KH	7.7.0.4
Критическая сила для изгибно-			
крутильной формы потери	Norte	217,635 кН	7.7.8.5
устойчивости			
Критический момент потери			-
устойчивости плоской формы изгиба в	Mar	3612,940 кН-см	приложение
упругой стадии			1
Условная гибкость при потере			
устойчивости плоской формы изгиба	Τ _{LT}	0,346	7.7.9.2
Кривая потери устойчивости (потеря			
устойчивости плоской формы изгиба)		b	7.7.9.2
Понижающий коэффициент при			
потере устойчивости плоской формы	XLT	0,939	7.7.9.2
изгиба			
Метод определения коэффициентов		1	
взаимодействия		-	
Коэффициент взаимодействия	k	1,402	
Расчётное сопротивление стали	R _v	338 H/mm ²	
Коэффициент условий работы	Ye	1	
Совместное действие осевого сжатия и изгиб	ба. Проверка п	ю формуле (7.100)	
Параметр	Обозн.	Значение Ед.изм.	Пункт
			(формула)
			CII 260
Расчётное осевое усилие сжатия	N	85,700 ĸH	
Эксцентриситет	e _N	0,785 см	7.7.2.3
Площадь эффективного сечения	A _{ef}	4,756 cm ²	
Расчётный момент сопротивления			
сечения	Wyef	12,816 cm°	

Рисунок 2.2.12,б – Результаты расчёта, представленные в Microsoft Excel[®]: Проверки (продолжение)

L

Геометрическая длина элемента

1,500 M

napawerp	0003H.	эначение сд.изм.	(формула)
Совместное действие осевого сжатия и из	згиба. Проверка п	о формуле (7.101)	Dame
козффициент услови и работы	Ye	1	
Расчетное сопротивление стали	n _y	338 H/MM	
поэффициент взаимодеиствия	K P	228 11/1 2	
взаимодеиствия	L.	1.400	
Метод определения коэффициентов		1	
потере устоичивости плоскои формы изгиба	XLT	0,939	7.7.9.2
Понижающий коэффициент при		0.020	77.00
Кривая потери устойчивости (потеря устойчивости плоской формы изпиба)		b	7.7.9.2
устойчивости плоской формы изгиба	${\bf X}_{\rm LT}$	0,346	7.7.9.2
устойчивости плоской формы изгиба в упругой стадии Условная гибкость при потере	Ma	3612,940 кН∙ам	Г
устоичивости Критический момент потери			Приложение
Критическая сила для изгибно- крутильной формы потери	NcrTF	217,635 кН	7.7.8.5
Критическая сила для крутильной формы потери устойчивости	N _{crT}	253,097 ĸH	7.7.8.4
Коэффициент устойчивости при центральном сжатии	Φγ	0,936	7.7.8.1
Коэффициент устойчивости при центральном сжатии	$\Phi_{\rm x}$	0,935	7.7.8.1
Кривая потери устойчивости относительно оси у - у		ь	7.7.8.1
Кривая потери устойчивости относительно оси x - x		b	7.7.8.1
Приведённая гибкость относительно оси у - у	π_{γ}	1,118	7.7.8.1
форма по тери устоя навости Приведённая гибкость относительно оси x - x	$\lambda_{\rm x}$	1,123	7.7.8.1
Расчётная длина при крутильной форме потери устойчивости	Lat	1,500 м	
Расчётная длина относительно оси у - у	I _{dy}	1,500 M	
Расчётная длина относительно оси x - x	letx	1,500 M	

			(формула) СП 260
Расчётное усилие сжатия	N	85,700 ĸH	
Эксцентриситет	e _N	0,785 см	7.7.2.3
Площадь эффективного сечения	Act	4,756 cm ²	

Рисунок 2.2.12, в – Результаты расчёта, представленные в Microsoft Excel[®]: Проверки (продолжение)

	Элементы		
Расчётный момент сопротивления сечения	Wyef	12,816 cm ³	
Понижающий коэффициент Понижающий коэффициент при	φ	0,703	
потере устой чивост и плоской формы изгиба	Xmin	0,939	7.7.9.2
Расчётное сопротивление стали по пределу текучести	R _v	338 H/mm ²	
Коэффициент условий работы элемента	Ye	1	
Проверка гибкости элемента			
Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) СП 260
Максимальная гибкость элемента	λ _{max}	34,5	
Предельная гибкость	λ	145,8	

Рисунок 2.2.12,г – Результаты расчёта, представленные в Microsoft Excel[®]: Проверки (окончание)

2.2.2. Устойчивость сжатых элементов в соответствии с ЕСЗ

2.2.2.1. Расчёт несущей способности по устойчивости сжатого элемента Собразного сечения

Задание: В программе CFSteel определить расчётную несущую способность по устойчивости сжатого стержневого элемента С-образного сечения из Примера Н документа Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123 [10].

Расчётная схема элемента приведена на Рисунке 2.2.13.

Рисунок 2.2.13 – Расчётная схема элемента

Дополнительные граничные условия: расчётная длина элемента при потере устойчивости по крутильной или изгибно-крутильной форме равна геометрической длине элемента, имеются закрепления на обоих концах от перемещения из плоскости, отсутствует закрепление от депланации торцовых сечений.

Поперечное сечение представлено на Рисунке 1.2.1 и 1.2.9. Размеры, а также геометрические характеристики полного и эффективных сечений приведены в п.1.2.2. Промежуточные вычисления для определения несущей способности сведены в Таблицу 2.2.2. Расчёт в CFSteel выполнен в двух вариантах: вариант (а) – упругий критический момент потери устойчивости плоской формы изгиба M_{cr} вычислен программно в соответствии с ECCS [26]; (б) – значение упругого критического момента потери устойчивости плоской формы изгиба M_{cr} вычислен Программно в соответствии с ECCS [26]; (б) вводилось в программу равным значению в Примере Н [10].

Параметр	Обозн.	Ед. изм.	Пункт (формула) EN 1993-1-1, EN 1993-1-3	Значение по [10]	СFSteel вариант (<i>a</i>)	%	CFSteel вариант (б)	%
Условная гибкость для расчёта по изгибной форме потери устойчивости относительно оси у - у	$\overline{\lambda_y}$	-	(6.51)	0,360	0,360	0	0,360	0
Кривая устойчивости (ось у - у)			Табл. 6.3	b	b	-	b	-
Коэффициент начальных несовершенств	α	-	Табл. 6.1	0,34	0,34	-	0,34	-
Редукционный коэффициент	χv	-	п.6.3.1.2	0,942	0,942	0	0,942	0
Расчётное значение несущей способности по изгибной форме потери устойчивости	$N_{b,Ed}$	κН	(6.48)	156,2	156,6	0,3	156,6	0,3
Критическая сила по крутильной форме потери устойчивости	$N_{cr,T}$	кН	(6.33a)	236,79*	258,01*	9*	258,01*	9*
Критическая сила по изгибно- крутильной форме потери устойчивости	N _{cr,TF}	κН	(6.35)	205,73*	221,86*	7,8*	221,86*	7,8*
Условная гибкость для расчёта по изгибно-крутильной форме потери устойчивости	$\overline{\lambda_{\scriptscriptstyle TF}}$	-	(6.53)	0,898	0,865	3,8	0,865	3,8
Редукционный коэффициент	χ_{TF}	-	п.6.3.1.2	0,662	0,683	3,2	0,683	3,2
Расчётная несущая способность по устойчивости	$N_{b,Rd}$	кН	(6.48)	109,7	113,6	3,6	113,6	3,6
Упругий критический момент потери устойчивости плоской формы изгиба	M_{cr}	кНсм		32581	3365	-	32581	-
Условная гибкость для расчёта по изгибно-крутильной форме потери устойчивости	$\overline{\lambda_{\scriptscriptstyle LT}}$	-	п.6.3.2.2	0,136	0,427	-	0,136	-
Редукционный коэффициент	χ_{LT}	-	п.6.3.2.2	1,0	0,915	-	1,0	-
Расчётная несущая способность элемента на изгиб	$M_{b,Rd}$	кНсм		604,9	562,6	7,5	614,9	1,6
Расчётная несущая способность по устойчивости	N_{Ed}	кН	(6.38)	85,7	87,2	1,8	89,0	3,9

T C 222	0		••
		noouni Totod	nacitara
a_{U}	СОПОСТАВЛСНИС		Daugura
I worning a line			p

* Значения момента инерции сечения при кручении и секториального момента инерции, входящие в формулы расчёта $N_{cr,T}$ и $N_{cr,TF}$, в [10] вычислены с учётом закругления углов; в CFSteel данные величины вычисляются в предположении отсутствия закруглений всоответствии с Приложением С [4]. Все остальные геометрические характеристики в [10] и в CFSteel вычислены с учётом закругления углов

2.2.2.2. Проверка устойчивости сжатого элемента С-образного сечения

Задание: В программе CFSteel выполнить расчёт на устойчивость сжатых элементов Собразного сечения, данные о которых приведены в работе Design of Cold-Formed Members Following New EN 1993-1-3 // Heinisuo, M., Kukkonen, J. [23]. Расчёт выполнить в соответствии с нормами EC3.

В [23] приведён расчёт по ЕС3 стержня С-образного сечения (Рисунок 2.2.14), результаты испытаний которого представлены в работе [25].

Размеры сечения: h = 97,3 мм, t = 1,48 мм, $b_{f1} = b_{f2} = 37$ мм, c = 12,5 мм, r = 0,85 мм (внутренний). Материал - сталь: E = 210000 H/мм², G = 80769 H/мм², v = 0,3, $f_{0,2} = 505$ H/мм², частный коэффициент $\gamma_{MI} = 1,0$.

Рисунок 2.2.14 - Поперечное сечение

В работе [25] приведены результаты испытаний стержней приведённого выше сечения разной длины от 1000 до 3000 мм. На обоих концах осуществлялась жёсткое закрепление так, что: исключались перемещения вдоль осей у - у и z - z, поворот вокруг осей у - у и z - z, вращение вокруг продольной оси стержня, а также исключалась депланация торцевых сечений. Верхний конец стержня свободен в продольном направлении. Авторы [25] на основании анализа полученных экспериментальных данных установили, что при таких условиях закрепления требованиями EN 1993-1-3 [4] по учёту эксцентриситета е_N, появляющегося в результате смещения центра тяжести эффективного сечения относительно центра тяжести полного сечения, можно пренебречь. Если нагрузка действует в центре тяжести сечения, такой случай может рассматриваться как центрально сжатый стержень. На основании этого в [23] за несущую способность стержня принято наименьшее значение из несущей способности по изгибной форме потери устойчивости, крутильной и изгибно-крутильной форме для центрально сжатого стержня: $N_{b,Rd} = min (N_{b,Rd,F}, N_{b,Rd,T}, N_{b,Rd,TF})$. В Таблице 2.2.3 приведено сравнение результатов расчёта в CFSteel по ЕСЗ с результатами расчёта [23] и результатами испытаний P_{эксп} [25]. С целью верификации расчётных значений N_{b,Rd,F}, N_{b,Rd,T}, N_{b,Rd,TF} в CFSteel также как и в [23] принято $N_{b,Rd} = min (N_{b,Rd,F}, N_{b,Rd,T}, N_{b,Rd,TF}).$

Расчётн.	N _{b,Rd,F}	N _{b,Rd,F}	%	N _{b,Rd,TF}	N _{b,Rd,TF}	%	N _{b,Rd}	N _{b,Rd}	%	Р _{эксп,}	$P_{_{ m 3Kc\pi}}/N_{b,Rd}$	$P_{_{ m 3Kc\pi}}/N_{b,Rd}$
длины	[23]	CFSteel		[23]	CFSteel		[23]	CFSteel		[25]	[23]	CFSteel
L _{cr,z} =L _{cr,y} =L _T	кН	кН		кН	кН		кН	кН		κН		
ММ												
500	86,5	87,0	0,6	84,4	85,0	0,7	84,4	85,0	0,7	89,6	1,06	1,05
750	75,4	75,6	0,3	71,6	72,1	0,7	71,6	72,1	0,7	82,4	1,15	1,15
1000	61,5	61,4	0,2	56,9	57,3	0,7	56,9	57,3	0,7	70,1	1,23	1,22
1250	47,7	47,4	0,6	44,0	44,3	0,7	44,0	44,3	0,7	58,1	1,32	1,31
1500	36,7	36,4	0,8	35,6	34,8	2,2	35,6	34,8	2,2	39,3	1,11	1,13

Таблица 2.2.3 – Сравнение результатов CFSteel с [23] и [25]

В таблице 2.2.4 приведено сравнение результатов, полученных в CFSteel с учетом эксцентриситета e_N (п.6.1.3 [4]) по формуле взаимодействия (6.36) с экспериментальными данными [25].

Таблица 2.2.4 – Сравнение результатов CFSteel с [25]

-	· ·	
Расчётн.	Рэксп	$P_{ m 3 K c m}/N_{Rd}$
длины	[25]	CFSteel
$L_{cr,z}=L_{cr,y}=L_T$	κН	(EC3)
ММ		
500	89,6	1,23
750	82,4	1,29
1000	70,1	1,33
1250	58,1	1,38
1500	39,3	1,20

В работе [25] также приведены результаты испытаний стержней такого же сечения длиной 500, 1000 и 1500 мм но с другим закреплением на концах. Стержни имели шарнирное закрепление относительно оси z - z и жёсткое относительно оси y - y. Также имело место жёсткое закрепление от вращения вокруг продольной оси стержня и от депланации торцевых сечений. Нагрузка прилагалась в центре тяжести сечения. В Таблице 2.2.5 приведены результаты расчётов в CFSteel испытанных стержней. Расчёты выполнены по нормам EC3. Проверка несущей способности по устойчивости производилась по формуле (6.36) [4] с учётом e_N .

-		
Длина	Рэксп	$P_{_{ m 3Kcn}}/N_{Rd}$
стержня,	[25]	CFSteel
MM	кН	(EC3)
1	2	3
500	82,0	1,13
1000	70,0	1,26
1500	40,0	1,18

Таблица 2.2.5 – Сравнение результатов CFSteel с [25]

2.2.3. Устойчивость сжатых элементов в соответствии с AISI S100 Specification

2.2.3.1. Определение несущей способности сжатого элемента из спаренных Собразных профилей

Задание: Используя ASD и LRFD методы определить несущую способность сжатого элемента из спаренных С-образных профилей (Рисунок 2.2.15). Коэффициенты приведения длины относительно обеих осей $K_x = K_y = 1,0$. Нераскреплённые длины: $L_x = 12 ft = 3658 mm$, $L_y = 6 ft = 1829 mm$. $K_t L_t = 6 ft = 1829 mm$. $F_y = 33 ksi = 227,5 N/mm^2$. Расстояние между метизами, соединяющими профили в сечении 12 in = 305 мм. Размеры С-образного профиля: h = 8 in = 203,2 mm, t = 0,075 in = 1,905 mm, b = 3 in = 76,2 mm, c = 0,7 in = 17,78 mm, r = 3/32 in = 2,38 mm. Пример взят из книги Wei-Wen Yu, LaBoube R.A. Cold-formed steel design // John Wiley & Sons, Inc., Fourth edition, 2010, 491 p. [31].

Figure 2.2.15 - Cross section

Solution: Properties of a full section are shown in Table 2.2.6.

Droporty		[3]	l]		CFS	teel	04
rioperty	Volume	U.S. unit	Value	SI unit	Value	SI unit	70
А	2,24	in ²	14,448	cm ²	14,395	cm ²	0,4
I _x	22,1	in ⁴	919,80	cm ⁴	919,53	cm ⁴	0,03
Iy	4,20	in ⁴	174,804	cm ⁴	174,663	cm ⁴	0,08
r _x	3,15	in	8,0	cm	7,99	cm	0,1
r _y	1,37	in	3,47	cm	3,48	cm	0,3

Table 2.2.6 – Properties of a full section

Table 2.2.7 – Nominal buckling stresses

	Sum	Value	accord	ing to [31]	CFSte	eel	Discre
Description	bol	Valua	U.S.	Valua	SI	Value	SI	pancy,
	001	value	unit	value	unit	value	unit	%
	Elastic	flexural buc	kling					
Modified slenderness ratio	KL/r _m	53,717		53,717		53,674		0,08
Elastic flexural buckling stress	F_{e}	100,902	ksi	695,72	N/ mm ²	695,45	N/ mm ²	0,04
Plate buckling coefficient	k	19,83		19,83		19,83		0
	Elastic	torsional bud	ckling					
Elastic torsional buckling stress	F_{e}	152,02	ksi	1048,2	N/	1086,3	N/	3,6
		Stress <i>F</i>			mm		mm	
Slandarnass factor	2	0.572		0.572		0.573		0.02
Sichderness factor	λ_c	0,372		0,372		0,373		0,02
Stress	F_n	28,777	ksi	198,42	N/ mm ²	198,77	N/ mm ²	0,2

Calculation of the effective area at the stress F_n is summarized in Table 2.2.8.

Table 2.2.8 - Calculation of the effective area at the stress F_n

	Sum	Value	accord	ing to [31]	CFSte	eel	Discre
Description	bol	Value	U.S.	Value	SI	Value	SI	pancy,
			unit		unit		unit	%
Effective	width	of the comp	ression	flandes				
Parameter	S	40,982		40,982		40,906		0,2
Required moment of inertia of the edge	I	0.002	in	0.83	mm	0.83	mm	0
stiffener	I _a	0,002	111	0,85	111111	0,05	111111	0
Moment of inertia of the full edge stiffener	I_s	0,000937	in	0,34	mm	0,39	mm	14
Parameter	R_I	0,469		0,469		0,472		0,6
Plate buckling coefficient	k	3,09		3,09		3,09		0
Slenderness factor	λ	0,664		0,664		0,664		0
Effective width	b	2,6625	in	67,62	mm	67,63	mm	0,01
Effe	ctive w	ridth of edge	stiffen	ers				
Slenderness factor	λ	0,355		0,355		0,356		0,03
Effective width	d_s	0,5313	in	13,49	mm	13,50	mm	0,07
Reduced effective width	d_s	0,249	in	6,32	mm	6,37	mm	0,08
Slenderness factor	λ	1,238		1,238		1,238		0
Eff	ective v	width of web	eleme	nt				
Slenderness factor	λ	1,678		1,678		1,681		0,2
Reduction factor	ρ	0,518		0,518		0,517		0,2
Effective width	b	3,969	in	100,81	mm	100,60	mm	0,02
Effective area of a section	A_e	1,601	in ²	10,346	cm^2	10,279	cm^2	0,7
Nominal axial load for flexural buckling	P_n	46,07	kips	204,919	kN	204,124	kN	0,04

Because edge-stiffened flanges are used for the section, the nominal axial load for distortional buckling should be checked according to Section C4.2 [7]. These calculations are summarized in Table 2.2.9.

	Sum	Value	accord	ing to [3]	[]	CFSte	eel	Discre
Description	bol	Valua	U.S.	Value	SI	Value	SI	pancy,
	001	value	unit	value	unit	value	unit	%
N	lethod ((a) of F_d calc	ulation	l				
Critical length	L _{cr}	20,36	in	517,1	mm	517,1	mm	0
Plate buckling coefficient for distirtional	k	0.578		0.578		0.579		0
buckling	κ _d	0,578		0,578		0,378		0
Elastic distortional buckling stress	F_d	9,63	ksi	66,4	N/mm ²	66,2	N/mm ²	0,3
Parameter	P _{crd}	21,57	kips	95,94	kN	95,36	kN	0,6
Slenderness factor	λ_d	1,85		1,85		1,86		0,5
Nominal axial load for distortional	D	31.00	king	138.20	ĿN	137 72	ĿN	0.4
buckling	1 n	51,09	кірз	136,29	KIN.	157,72	KIN	0,4
М	lethod ((b) of F_d calc	culation	l				
Critical length	L _{cr}	25,35	in	643,9	mm	643,7	mm	0
Elastic distortional buckling stress	F_d	24,90	ksi	171,7	N/mm ²	171,1	N/mm ²	0,3
Parameter	P _{crd}	55,78	kips	248,11	kN	246,40	kN	0,7
Slenderness factor	λ_d	1,151		1,151		1,154		0,3
Nominal axial load for distortional	D	40.25	king	210.64	ĿΝ	218 17	ĿN	0.7
buckling	r _n	49,23	кips	219,04	KIN	210,17	KIN	0,7
Allowable load for the ASD method	P_a	25,59	kips	113,82	kN	113,40	kN	0,4
Design strength for the LRFD method	$\Phi_c P_n$	39,16	kips	174,18	kN	173,51	kN	0,4

Table 2.2.9 - Distortional buckling

2.3. Сжатие с изгибом

2.3.1. Сжатый с изгибом элемент из С-образного профиля по СП 260.1325800.2016

Задание: Проверить прочность и устойчивость сжатого с изгибом стержневого элемента С-образного сечения. Расчётная схема элемента приведена на Рисунке 2.3.1. l = 1,5 m, $N=40 \kappa H; q = 0,15 \kappa H/cm$. Распределённая нагрузка приложена на уровне стенки. $R_{yn} = 35,5 \kappa H/cm^2; \gamma_m = 1,05; R_y = 33,81 \kappa H/cm^2$. Коэффициент условий работы принять равным 1,0.

Рисунок 2.3.1 – Расчётная схема элемента

Поперечное сечение приведено на Рисунке 2.3.2. Размеры сечения: h = 102 мм, t = 2 мм, b = 120 мм, c = 26 мм, r = 10 мм (внутренний). Геометрические характеристики сечения принять из расчёта по CFSteel.

Рисунок 2.3.2 – Поперечное сечение

Граничные условия: имеются закрепления на обоих концах от перемещения из плоскости, отсутствует закрепление от депланации торцовых сечений, расчётная длина элемента при потере устойчивости по крутильной и изгибно-крутильной форме равна геометрической длине элемента.

$$M_{ymax} = \frac{ql^2}{8} = \frac{0.15 \cdot 150^2}{8} = 421,875 \text{ kHcm}$$

$$Q_{max} = \frac{ql}{2} = \frac{0,15 \cdot 150}{2} = 11,25 \text{ KH}$$

Геометрические характеристики полного и эффективного сечений приведены на Рисунках 2.3.6 – 2.3.8.

Проверка прочности сечения на действие поперечной силы (п. 7.7.6 [1])

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Прочность элемента при сжатии с изгибом (п.7.7.4 [1])

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

В соответствии с Приложением Г [1] $x_g = x_a - x_s$, где x_a – координата точки приложения поперечной нагрузки; x_s – координата центра изгиба (Рисунок 2.3.4).

Рисунок 2.3.4 – К опрделению x_g

Расчёт по п. 7.7.10.4[1]

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Условие устойчивости согласно п.7.7.10.4 [1]

$$\left(\frac{N}{\varphi A_{ef} R_y \gamma_c}\right)^{0,8} + \left(\frac{M_{max}}{\chi_{LT} W_{y,ef} R_y \gamma_c}\right)^{0,8}$$

= $\left(\frac{40}{0,703 \cdot 4,76 \cdot 33,81 \cdot 1}\right)^{0,8} + \left(\frac{421,875}{0,979 \cdot 23,526 \cdot 33,81 \cdot 1}\right)^{0,8} = 1,048 > 1.$

Условие устойчивости не выполняется.

Разгружающее действие момента от эксцентриситета, возникающего от несовпадения осей полного и эффективного сечений, не учитываем.

Расчёт по п. 7.7.10.3[1]

Для сжатых с изгибом элементов должны выполняться условия:

$$\frac{N}{\varphi_{y}A_{ef}R_{y}\gamma_{c}} + k_{yy}\frac{M_{max}}{\chi_{LT}W_{y,ef}R_{y}\gamma_{c}} \le 1,$$
$$\frac{N}{\varphi_{x}A_{ef}R_{y}\gamma_{c}} + k_{xy}\frac{M_{max}}{\chi_{LT}W_{y,ef}R_{y}\gamma_{c}} \le 1$$

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Формулы взаимодействия (п. 7.7.10.3[1])

$$\frac{40}{0,936 \cdot 4,76 \cdot 33,81 \cdot 1} + 1,139 \frac{421,875}{0,98 \cdot 23,526 \cdot 33,81 \cdot 1} = 0,883 < 1,$$
$$\frac{40}{0,935 \cdot 4,76 \cdot 33,81 \cdot 1} + 1,139 \frac{421,875}{0,98 \cdot 23,526 \cdot 33,81 \cdot 1} = 0,883 < 1.$$

В таблице 2.3.1 приведено сравнение результатов ручного расчёта, представленного выше, с результатами, полученными в CFSteel.

Параметр	Обозн.	Ед. изм.	Пункт (формула) СП 260	Ручной расчёт	CFSteel	Расхо ждене, %
Проверка прочности с	ечения н	а действ	вие поперечн	юй силы		
Условная гибкость стенки	$\overline{\lambda_w}$	-	7.7.6.2	0,827	0,827	0
Расчётное наприжение при сдвиге	R_s	кН/см ²	7.7.6.1	19,61	19,61	0
Несущая способность сечения	Q_w	κН	7.7.6.1	92,56	92,56	0
Проверка проч	ности пр	и сжат	ии с изгибол	1		
Левая часть проверки прочности		-	7.7.4	0,779	0,779	0
Проверка уст	ойчивос	mu no n.	7.7.10.4 [1]			
Приведённая гибкость относительно оси <i>x</i> - <i>x</i>	$\overline{\lambda_x}$	-	7.7.8.1	0,358	0,358	0

Таблица 2.3.1 – Сопоставление результатов расчётов

	Элемен	нты				
	1				I	1
Приведённая гибкость относительно оси у -	$\overline{\lambda_{\nu}}$	-	7.7.8.1	0,356	0,356	0
y Vaadduuuaum varaiiuuaaamu mau	У					
соэффициент устоичивости при пентральном сжатии по изгибной форме	φ_x	-	СП 16	0,935	0,935	0
Коэффициент устойчивости при	0		СП 16	0.026	0.026	0
центральном сжатии по изгибной форме	φ_y	-		0,930	0,930	0
Критическая сила по крутильной форме	N _{cr T}	кН	(7.90)	253,1	253,1	0
потери устойчивости	07,1		× /	,		
критическая сила по изгионо-крутильной	$N_{cr,TF}$	κН	(7.91)	217,6	217,6	0
форме потери устоичивости Условная гибкость при крутильной						
(изгибно-крутильной) форме потери	7	_	(7.89)	0.860	0.860	0
(погото круппирато) форме потори	λ_T		(7.07)	0,000	0,000	Ū
Коэффициент устойчивости по						
крутильной/ изгибно-крутильной форме	φ_T	-	7.7.8.3	0,703	0,703	0
Минимальный коэффициент	φ_{min}	-		0,703	0,703	0
Упругий критический момент потери	M	кНсм	Прилож	17610	17615.8	0.03
устойчивости плоской формы изгиба		Referre	ение Г	0.010	0.010	0,05
условная гиокость	λ_{LT}	-	(7.96)	0,213	0,212	0,5
понижающии коэффициент при потере устойчивости плоской формы изгиба	χ_{LT}	-	(7.94)	0,996	0,996	0
Понижающий коэффициент при потере			СП 16	0.070	0.070	0
устойчивости плоской формы изгиба	χ_{LT}	-	CII 10	0,979	0,979	0
Левая часть проверки устойчивости	-	-	(7.101)	1,048	1,048	0
Элемента Проверка уст	กมันแหกต	mu no n 7	7 7 10 3 [1]			
Критический момент потери устойчивости	M _{cr0}	кНсм	.,	10260	10209,8	0,4
плоской формы изгиба в упругой стадии	210				,	,
при постоянном значении изгибающего						
момента по длине элемента						
Условная гибкость при потере	$\overline{\lambda_0}$		Прилож	0,279	0,279	0
устойчивости плоской формы изгиба при	-	-	ение В			
постоянном моменте по длине элемента	1	_		0.202	0.202	0
при потере устойчивости плоской формы	$\lambda_{0 \ lim}$			0,202	0,202	Ū
изгиба при постоянном моменте по длине						
элемента	G		тс	0.000	1 000	0.1
Коэффициент перехода к эквивалентнои	$C_{m,y0}$		Гаолициа В.2	0,999	1,000	0,1
прямоугольной эпюре моментов	a		212	0.000	0.000	0
Коэффициент	$C_{m,n}$	-		0,999	0,999	0
Коэффициент	$C_{m,LT}$	-		1,106	1,108	0,2
Параметр	μ_y	-	Таблициа	0,998	0,998	0
Параметр		_	В.1 Таблициа	, , , , , , , , , , , , , , , , , , , ,	, , , ,	
	Pax		B.1	0,998	0,998	0
Коэффициент взаимодействия k _{уу}	k_{yy}	-	Таблициа В 1	1,140	1,142	0,2
Коэффициент взаимодействия k_{vv}	krv	-	ы. Таблициа	1,140	1,142	0,2
	лу		B.1	0.000		
Левая часть неравенства (7.99) Перад насть неравенства (7.100)			п.7.7.10.3	0,883	0,884	0,1
левая часть перавенства (1.100)			1.7.7.10.3	0,005	0,004	0,1

Результаты расчёта в программе CFSteel представлены на Рисунках 2.3.4 – 2.3.10.

Сжатие с изгибом [СП260]	×
Наименование элемента Элемент 7-9 Длина элемента L 1,5 м	Сечение
Расчётное осевое усилие скатия N 40 кH К-т условий работы (уст-ть) Y _c 1 ✓ Расчётный момент (устойчивость) M 421,875 кH см К-т условий работы (прочность) Y _c 1 ✓ Расчётный момент (прочность) M 421,875 кH см Q 11,25 кH ⊙Проверка прочности © Ввод расчётной длины: ○Ввод к-тов приведения длины: Расчётная длина относительно оси x - x lefx 1,5 м К-т приведения длины µ _x 1 ✓ Расчётная длина относительно оси y - y lefy 1,5 м К-т приведения длины µ _y 1 ✓ Расчётная длина: крутильная форма L _{cr} T 1,5 м ⊘устойчивость плоской формы изгиба Расчётная длина: плоская форма изгиба L _{cr} T 1,5 м M _{cr} 0 кH·см Устойчивость плоской формы изгиба Граничные условия Козффициент закрепления концов от поворота вокруг оси эл-та k 1 ✓	
Коэффициент Стеснения депланации концов элемента К _w 1 С Коэффициент С ₁ 1,127 П В точке с максимальным моментом (устойчивость) М Уровень приложения нагрузки Коэффициент С ₂ 0,454 П С Скатие Скатие 0,525 П	Выбрать С 102-2-120 ECCSLipChannel
Эпкора моментов Расчётный момент (прочность) © () () () () () () () () () () () () ()	Стандарт EN 10147 Сталь S350GD R _{ул} 355 H/мм ² R _{un} 420 H/мм ² Комментарии
вырать	Сжатие с изгибом Вычислить Закрыть Справка

Рисунок 2.3.4 – Ввод данных

Рисунок 2.3.5 – Результаты расчёта. Общие данные

Общие данные	Характеристики полного сечения	Характеристики эф	фективног	го сечения	Характе	ристики эффектив	зного сечения (изгиб)	Результа	ты расчёт
Наименование	карактеристики		Обозн.	Значение	Ед.изм.				
Площадь попер	ечного сечения		А	7,342	cm ²				
Момент инерци	и относительно оси х - х		Ix	139,162	см ⁴				
Момент сопроти	ивления сечения для нижнего волокн	ia	W _{xH}	27,287	CM ³				
Момент сопроти	ивления сечения для верхнего волок	на	W _{×B}	27,287	см ³		A Y		
Радиус инерции	1 относительно оси х - х		i _x	4,354	СМ				
Момент инерци	и относительно оси у - у		Iy	140,533	cm ⁴				
Момент сопроти	ивления сечения для левого волокна		W _{ynes}	27,044	CM ³		u		
Момент сопроти	ивления сечения для правого волокн	a	Wynp	20,656	CM ³				
Радиус инерции	1 относительно оси у - у		i _y	4,375	CM				
Расстояние от л	певого волокна стенки до центра тях	кести сечения	z0	5,196	CM			/	
Расстояние от н	нижнего волокна до центра тяжести	сечения	Y _{LIT}	5,100	CM				
Положение цен	тра изгиба относительно центра тяж	кести по оси х - х	Хци	-11,573	CM				
Положение цен	тра изгиба относительно центра тяж	кести по оси у - у	Yци	0,000	CM				
Момент инерци	и при свободном кручении		It	0,102933	cm ⁴				
Секториальный	і момент инерции		Iw	4728,070	CM ⁶				
Вес одного пого	онного метра профиля			5,97	кг/м	Д ЦИ			F

Рисунок 2.3.6 – Результаты расчёта. Характеристики полного сечения

общие данные характеристики полного сечения характерист	ики эффективног	о сечения Х
Наименование характеристики	Обозн.	Значение Ед
Площадь поперечного сечения	A _{ef}	4,756 cm
Момент инерции относительно оси х - х	I _{x ef}	88,730 cm
Момент сопротивления сечения для верхнего волокна	W _{xB ef}	17,398 см
Момент сопротивления сечения для нижнего волокна	W _{xH ef}	17,398 см
Радиус инерции относительно оси х - х	i _{x ef}	4,320 см
Момент инерции относительно оси у - у	I _{y ef}	96,765 cm
Момент сопротивления сечения для левого волокна	W _{ynes ef}	21,937 см
Момент сопротивления сечения для правого волокна	W _{ynp ef}	12,816 см
Радиус инерции относительно оси у - у	ⁱ y ef	4,511 см
Расстояние от левого волокна стенки до центра тяжести сечени:	я z _{0 ef}	4,411 CM
Расстояние от нижнего волокна до центра тяжести сечения	Ү _{цт ef}	5,100 cm

Рисунок 2.3.7 – Результаты расчёта. Характеристики эффективного сечения (сжатие)

			Элем	енты								
С Результаты	1									_		
Общие данные	Характеристики полного сечения	Характеристики эф	фективног	о сечения	Характе	ристики эфф	ективного (ечения (из	гиб) р	результ	гаты рас	чёт
Наименование	характеристики		Обозн.	Значение	Ед.изм.							
Площадь попер	речного сечения		A _{ef}	6,934	см ²							
Момент инерци	и относительно оси х - х		I _{x ef}	139,020	см ⁴							
Момент сопроти	ивления сечения для верхнего воло	кна	W _{x8 ef}	27,259	CM ³							
Момент сопроти	ивления сечения для нижнего волок	на	W _{xH ef}	27,259	см ³			A	Y			
Радиус инерции	и относительно оси х - х		i _{x ef}	4,478	СМ		-					
Момент инерци	и относительно оси у - у		I _{y ef}	129,306	см ⁴							-
Момент сопроти	ивления сечения для левого волокн	a	W _{улев ef}	23,526	CM ³				цτ			
Момент сопроти	ивления сечения для правого волок	на	W _{ynp ef}	19,882	CM ³							
Радиус инерции	и относительно оси у - у		ⁱ y ef	4,318	CM							
Расстояние от л	левого волокна стенки до центра тя	жести сечения	z _{0 ef}	5,496	CM							
Расстояние от н	нижнего волокна до центра тяжести	1 сечения	Y _{ut ef}	5,100	CM							

Рисунок 2.3.8 – Результаты расчёта. Характеристики эффективного сечения (изгиб)

С Результаты						_			×
Характеристики эффективного сечения	Характеристики эффективного сечения (изгиб)	Резу	ультаты расчёта						1
Проверка			Расчётное нер	авенство	Значе	ние	Пунк	т (формул	na)
Расчёт на прочность при сжатии с изгиб	OM		$\frac{N}{A_{ef}R_{y}\gamma_{c}} + \frac{M_{y} + N}{W_{yef}R_{y}}$	$\frac{e_N}{\gamma_c} \le 1$	0,779	< 1 🗸	7.7.4		
Расчёт на поперечную силу			Q/Q _w	≤ 1	0,122	< 1 🗸	7.7.6		
Совместное действие осевого сжатия и	изгиба. Проверка по формуле взаимодействия (7.9	99)	$\frac{N}{\varphi_y A_{af} R_y \gamma_c} + k_{yy} \frac{M_y}{\chi_{LT} W}$	$\frac{+e_NN}{V_{ef}R_y\gamma_c} \le 1$	0,884	< 1 🗸	7.7.1	0.3	
Совместное действие осевого сжатия и	изгиба. Проверка по формуле взаимодействия (7.	100)	$\frac{N}{\varphi_x A_{ef} R_y \gamma_c} + k_{xy} \frac{M_y}{\chi_{LT} W_y}$	$\frac{+e_NN}{e_fR_y\gamma_c} \le 1$	0,884	< 1 🗸	7.7.1	0.3	
Совместное действие осевого сжатия и	изгиба. Проверка по формуле взаимодействия (7.	101)	$\left(\frac{N}{\varphi A_{ef} R_{y} \gamma_{c}}\right)^{0.3} + \left(\frac{e_{N} N}{\chi_{LT} W}\right)^{0.3}$	$\frac{+M_{y(x)}}{V(x)e_{f}R_{y}\gamma_{c}}\Big)^{0,3} \leq$	1 1,048	> 1 🗶	7.7.1	0.4	
<									3
Совместное действие осевого сжа	тия и изгиба. Проверка по формуле взаимод	ейст	гвия (7.99)						
Параметр			Обозн.	Значение	Ед.изм.	Пункт	(форм	іула) СП 2	6
Расчётное осевое усилие сжатия			N	40,000	кН				
Изгибающий момент			м	421,875	книсм				
Эксцентриситет			e _N	-0,785	СМ	7.7.2.	3		
Эксцентриситет, принимаемый в расчёт			e _N	0,000	СМ				
Площадь эффективного сечения			A _{ef}	4,756	см2				
Расчётный момент сопротивления сечен	ия		W _{ef}	23,526	см ³				
Геометрическая длина элемента			L	1,500	м				
Расчётная длина относительно оси х - х			I _{efx}	1,500	м				
Расчётная длина относительно оси у - у			I _{efv}	1,500	м				
Расчётная длина при крутильной форме	потери устойчивости		L _{oT}	1,500	м				
Расчётная длина при потере устойчивос	ти плоской формы изгиба		L _{crLT}	1,500	м				
Приведённая гибкость относительно ос	их-х		$\overline{\lambda_x}$	0,358		7.7.8.	1		
Приведённая гибкость относительно ос	и у - у		$\overline{\lambda_{y}}$	0,356		7.7.8.	1		
Кривая потери устойчивости относитель	ьно оси х - х			Ь		7.7.8.	1		
Кривая потери устойчивости относитель	ьно оси у - у			b		7.7.8.	1		
Коэффициент устойчивости при централ	льном сжатии		φ _x	0,935		7.7.8.	1		
Коэффициент устойчивости при централ	льном ожатии		φγ	0,936		7.7.8.	1		
Критическая сила для крутильной форм	ы потери устойчивости		N _{crT}	253,097	кН	7.7.8.	4		
Критическая сила для изгибно-крутильн	юй формы потери устойчивости		NorTE	217,635	кН	7.7.8.	5		
Критический момент потери устойчивост	ти плоской формы изгиба в упругой стадии		M _{cr}	17615,758	кном	Прило	жение	Г	
Условная гибкость при потере устойчив	ости плоской формы изгиба		λ _{LT}	0,212		7.7.9.	2		
Кривая потери устойчивости (потеря ус	тойчивости плоской формы изгиба)			Ь		7.7.9.	2		
Понижающий коэффициент при потере у	устойчивости плоской формы изгиба		XLT	0,979		7.7.9.	2		
Метод определения коэффициентов вза	имодействия			1					
Коэффициент взаимодействия			k	1,142					
Расчётное сопротивление стали			Rv	338	Н/мм ²				
Коэффициент условий работы			Yc	1					
				Excel		Закрыті	•	Справка	a

С Результаты			– 🗆 ×
Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Рез	ультаты расчёта		•
Проверка	Расчётное не	равенство	Значение Пункт (формула)
Расчёт на прочность при сжатии с изгибом	$\frac{N}{A_{ef}R_y\gamma_c} + \frac{M_y + N_y}{W_{yef}R_y}$	$\frac{V e_N}{V_V \gamma_c} \le 1$ (),779 < 1 ✓ 7.7.4
Расчёт на поперечную силу	Q/Q _w	≤1 (),122 < 1 ✓ 7.7.6
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{m A_{x} R_{y}} + k_{yy} \frac{M_{y}}{r_{yy}}$	$\frac{+\epsilon_N N}{V R V} \le 1$ (),884 < 1 🖌 7.7.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100)	$\frac{N}{m_{e}A_{e}R_{e}Y_{e}} + k_{xy}\frac{M_{y}}{Y_{e}-1}$	$\frac{+e_N N}{V_{res}R_V V_s} \leq 1 \qquad ($),884 < 1 🗸 7.7.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\left(\frac{N}{\varphi A_{ef} R_{y} \gamma_{c}}\right)^{0,8} + \left(\frac{e_{N}}{\chi_{LT} V}\right)^{0,8}$	$\frac{V + M_{y(x)}}{V_{y(x)ef}R_y\gamma_c}\Big)^{0,8} \le 1$	1,048 > 1 × 7.7.10.4
<			2
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (7.100)		
Параметр	Обозн.	Значение Ед.	.изм. Пункт (формула) СП 260
Расчётное осевое усилие сжатия	N	40,000 KH	
Изгибающий момент	M	421,875 кH	'CM
Эксцентриситет	e _N	-0,785 см	7.7.2.3
Эксцентриситет, принимаемый в расчёт	e _N	0,000 cm	
Площадь эффективного сечения	A _{ef}	4,756 cm ²	!
Расчётный момент сопротивления сечения	Wef	23,526 cm ³	1
Геометрическая длина элемента	L	1,500 M	
Расчётная длина относительно оси х - х	l _{efx}	1,500 M	
Расчётная длина относительно оси у - у	l _{efy}	1,500 M	
Расчётная длина при крутильной форме потери устойчивости	L _{oT}	1,500 M	
Расчётная длина при потере устойчивости плоской формы изгиба	L _{crt.T}	1,500 M	
Приведённая гибкость относительно оси х - х	λ _x	0,358	7.7.8.1
Приведённая гибкость относительно оси у - у	λ.	0,356	7.7.8.1
Кривая потери устойчивости относительно оси х - х	,	b	7.7.8.1
Кривая потери устойчивости относительно оси у - у		b	7.7.8.1
Коэффициент устойчивости при центральном сжатии	φ _x	0,935	7.7.8.1
Коэффициент устойчивости при центральном ожатии	Φγ	0,936	7.7.8.1
Критическая сила для крутильной формы потери устойчивости	N _{crT}	253,097 кН	7.7.8.4
Критическая сила для изгибно-крутильной формы потери устойчивости	N _{crTF}	217,635 кН	7.7.8.5
Критический момент потери устойчивости плоской формы изгиба в упругой стадии	Mcr	17615,758 кH	см Приложение Г
Условная гибкость при потере устойчивости плоской формы изгиба	λ _{LT}	0,212	7.7.9.2
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2
Понижающий коэффициент при потере устойчивости плоской формы изгиба	X _{LT}	0,979	7.7.9.2
Метод определения коэффициентов взаимодействия		1	
Коэффициент взаимодействия	k	1,142	
Расчётное сопротивление стали	Ry	338 H/M	IM ²
Коэффициент условий работы	Yc	1	
		Excel	Закрыть Справка

Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Рез Проверка Расчёт на прочность при скатии с изгибом Расчёт на поперечную силу	вультаты расчёт Расчётное	ra		
Проверка Расчёт на прочность при сжатии с изгибом Расчёт на поперечную силу	Расчётное			•
Расчёт на прочность при окатии с изгибом Расчёт на поперечную силу		неравенство	Значение Пункт (форму	ла)
Расчёт на поперечную силу	$\frac{N}{A_{ef}R_{y}\gamma_{c}} + \frac{M_{y}}{W_{ye}}$	$\frac{+Ne_N}{f^R_y \gamma_c} \le 1$	0,779 < 1 ✓ 7.7.4	
	Q/0	Q _w ≤ 1	0,122 < 1 🗸 7.7.6	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_{v}A_{ac}R_{v}\gamma_{c}} + k_{yy}$	$\frac{M_y + e_N N}{(r + W_{rot} - R_v)^2} \le 1$	0,884 < 1 🗸 7.7.10.3	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100)	$\frac{N}{\varphi_{y}A_{xx}R_{y}\gamma_{c}} + k_{xy}\gamma_{c}$	$\frac{M_y + e_N N}{\sqrt{\tau W_{wat} R_w Y_c}} \le 1$	0,884 < 1 ✓ 7.7.10.3	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\left(\frac{N}{\varphi A_{ef} R_y \gamma_c}\right)^{0.3} + \left(\frac{N}{\varphi R_{ef} R_y \gamma_c}\right)^{0.3}$	$\frac{e_N N + M_{y(x)}}{e_M W_{y(x)ef} R_y \gamma_c} \Big ^{0.3} \le$	1 1,048 > 1 × 7.7.10.4	
<				>
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст	твия (7.101)			^
Параметр	Обозн.	Значение Ед	.изм. Пункт (формула) СП 260	1
Эксцентриситет	e _N	-0,785 см	7.7.2.3	
Эксцентриситет, принимаемый в расчёт	e _N	0,000 см		
Площадь эффективного сечения	A _{ef}	4,756 cm	2	
Расчётный момент сопротивления сечения	W _{v(x)ef}	23,526 cm	3	
Геометрическая длина элемента	L	1,500 M		
Расчётная длина относительно оси х - х	l _{efx}	1,500 M		
Расчётная длина относительно оси у - у	l _{efv}	1,500 M		
Расчётная длина при крутильной форме потери устойчивости	Lat	1,500 M		
Расчётная длина при потере устойчивости плоской формы изгиба	L _{orLT}	1,500 M		
Приведённая гибкость относительно оси х - х	λ _x	0,358	7.7.8.1	
Приведённая гибкость относительно оси у - у	λ _v	0,356	7.7.8.1	
Кривая потери устойчивости относительно оси х - х		b	7.7.8.1	
Кривая потери устойчивости относительно оси у - у		b	7.7.8.1	
Коэффициент устойчивости при центральном сжатии	φ _x	0,935	7.7.8.1	
Коэффициент устойчивости при центральном сжатии	φ	0,936	7.7.8.1	
Критическая сила при крутильной форме потери устойчивости	N _{crT}	253,097 кH	7.7.8.4	
Критическая сила при изгибно-крутильной форме потери устойчивости	Norte	217,635 кH	7.7.8.5	
Условная гибкость при крутильной/изгибно-крутильной форме потери устойчивости	λ _T	0,860	7.7.8.3	
Кривая потери устойчивости при крутильной/изгибно-крутильной форме		b	7.7.8.3	
Коэффициент устойчивости при крутильной/изгибно-крутильной форме потери устойчивости	φ _T	0,703	7.7.8.3	
Расчётный понижающий коэффициент	φ	0,703		
Упругий критический момент потери устойчивости плоской формы изгиба	M _{cr}	17615,758 кH	см Приложение Г	
Условная гибкость при потере устойчивости плоской формы изгиба	λ _{LT}	0,212	7.7.9.2	
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2	
Понижающий коэффициент при потере устойчивости плоской формы изгиба	XLT	0,979	7.7.9.2	
Расчётное сопротивление стали	R	338 H/r	1M ²	
Коэффициент условий работы	Y _c	1		

Рисунок 2.3.9 – Результаты расчёта. Результаты проверок

C	Delta Engineering Softw	are	CFSteel 4.3		страница 5
	http://www.CFSteel.ru		User		
0	mailto:deltaing@mail.ru		СП260		28.04.2022
Элемент	7-9				
	Проверка	Расчётное неравенство	Значение		Пункт (формула) СП 260
Расчёт на сжатии с	а прочность при : изгибом	$\frac{N}{A_{af}R_{y}\gamma_{e}} + \frac{M_{y} + Nc_{N}}{W_{yaf}R_{y}\gamma_{e}} \leq 1$	0,779 < 1	~	7.7.4
Расчёт на	а поперечную силу	Q / Q _w ≤ 1	0,122 < 1	<	7.7.6
Совмести сжатия и формуле	ное действие осевого 1 изгиба. Проверка по 2 взаимодействия (7.99)	$\frac{N}{\varphi_{V}A_{2f}B_{V}\gamma_{L}} + k_{\gamma\gamma}\frac{M_{j} + \epsilon_{N}N}{\chi_{2f}W_{12f}B_{V}\gamma_{L}} \leq 1$	0,884 < 1	~	7.7.10.3
Совмести сжатия и формуле (7.100)	ное действие осевого 1 изгиба. Проверка по 2 взаимодействия	$\frac{N}{\varphi_{2}\mathcal{A}_{xy}R_{y}\gamma_{c}} + k_{xy}\frac{M_{y} + \epsilon_{B}N}{\chi_{zr}W_{yxr}R_{y}\gamma_{c}} \leq 1.$	0,884 < 1	~	7.7.10.3
Совмести сжатия и формуле (7.101)	ное действие осевого 1 изгиба. Проверка по 2 взаимодействия	$\left(\frac{N}{\rho A_{ef} R_{\gamma} \gamma_c}\right)^{0,1} + \left(\frac{e_{\beta} N + M_{\gamma(p)}}{\chi_{i,p} W_{\gamma(p),ef} R_{\gamma} \gamma_c}\right)^{0,0} \leq 1$	1,048 > 1	×	7.7.10.4

Расчёт на прочность при сжатии с изгибом

Параметр	Обозн.	Значение Ед.изм.	. Пункт (формула) СП 260
Расчётное осевое усилие сжатия	Ν	40,000 ĸH	
Изгибающий момент	Mγ	421,875 кН·см	
Эксцентриситет	e _N	-0,785 см	7.7.2.3
Расчётный изгибающий момент		421,875 кН·см	
Площадь эффективного сечения	A _{er}	4,756 cm²	
Расчётный момент сопротивления сечения	Wyer	23,526 см ³	
Расчётное сопротивление стали	R _y	338 H/мм ²	
Коэффициент условий работы	γ _c	1	
Расчёт на поперечную силу			
Параметр	Обозн.	Значение Ед.изм.	. Пункт (формула) СП 260
Расчётная поперечная сила	Q	11,250 кН	
Расчётная высота стенки	s _w	118,0 MM	7.7.6

Рисунок 2.3.10,а – Результаты расчёта в Excel. Результаты проверок (начало)

Расчётная толщина	t	2,0 мм	
Условная гибкость стенки	πw	0,827	7.7.6
Расчётное сопротивление стали сдвигу	Rs	196 Н/мм ²	7.7.6
Расчётная несущая способность сечения от действия поперечной силы	Q _w	92,557 кН	(7.7.9)

Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)					
Параметр	Обозн.	Значение	Ед.изм.	Пункт	
				(формула)	
				CII 260	
Расчётное осевое усилие	Ν	40,000	кН		
сжатия		,			
Изгибающий момент	M	421,875	кН∙см		
Эксцентриситет	e _N	-0,785	CM	7.7.2.3	
Эксцентриситет, принимаемый	e.,	0.000	CM.		
в расчёт	~N	0,000	CM		
Площадь эффективного сечения	A _{er}	4,756	CM2		
Расчётный момент	w	22 526			
сопротивления сечения	vv _{ef}	25,520	CM		
Геометрическая длина		1 500			
элемента	-	1,500	m		
Расчётная длина относительно	Ι.	1 500			
оси х - х	'erx	1,500	m		
Расчётная длина относительно	1.	1 500	м		
оси у - у	'ery	1,500			
Расчётная длина при					
крутильной форме потери	Lort	1,500	м		
устойчивости					
Расчётная длина при потере					
устойчивости плоской формы	L _{crLT}	1,500	м		
изгиба					
Приведённая гибкость	π.	0.358		7781	
относительно оси х - х		0,000			
Приведённая гибкость	π.	0.356		7.7.8.1	
относительно оси у - у	1	,			
Кривая потери устойчивости					
относительно оси х - х		b		7.7.8.1	
Кривая потери устойчивости					
относительно оси у - у		b		7.7.8.1	
V					
коэффициент устоичивости при	Φx	0,935		7.7.8.1	
центральном сжатии					
коэффициент устоичивости при	Φν	0,936		7.7.8.1	
центральном сжатии		-			

Рисунок 2.3.10,6 – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Критическая сила для крутильной формы потери	N _{erT}	253,097 кН	7.7.8.4
устоичивости Критическая сила для изгибно- крутильной формы потери	N _{ertf}	217,635 кН	7.7.8.5
устоичивости Критический момент потери устойчивости плоской формы изгиба в упругой стадии	M _{er}	17615,758 кН-см	Приложение Г
Условная гибкость при потере устойчивости плоской формы изгиба	${\bf x}_{\rm lt}$	0,212	7.7.9.2
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2
Понижающий коэффициент при потере устойчивости плоской формы изгиба Матол определения	Χ _{LT}	0,979	7.7.9.2
коэффициентов взаимодействия		1	
Коэффициент взаимодействия	k	1,142	
Расчётное сопротивление стали	\mathbf{R}_{y}	338 H/mm²	
Коэффициент условий работы	Ye	1	

Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100) Параметр Обозн. Значение Едизм. Пункт

Расчётное осевое усилие N 40,000 кН скатия М 421,875 кН-см Изгибающий момент M 421,875 кН-см Эксцентриситет e _N -0,785 см 7.7.2.3 Эксцентриситет, принимаемый в расчёт e _N 0,000 см 1.7.2.3 Площадь эффективного сечения A _{er} 4,756 см ² 1.500 м Расчётный момент U 1,500 м 1.500 м сопротивления сечения I _{enx} 1,500 м 1.500 м Расчётная длина относительно оси х - х I _{enx} 1,500 м 1.500 м	haponerp	000511.	эначение едиом.	(формула) СП 260
Изгибающий момент M 421,875 кН-см Эксцентриситет е _N -0,785 см 7.7.2.3 Эксцентриситет, принимаемый в расчёт е _N 0,000 см 9 Площадь эффективного сечения A _{ef} 4,756 см ² 9 Расчётный момент сопротивления сечения Wer 23,526 см ³ 1 Геометрическая длина элемента L 1,500 м 1 Расчётная длина относительно оси х - х I _{efx} 1,500 м 1 Расчётная длина относительно оси y - y I _{efy} 1,500 м 1	Расчётное осевое усилие сжатия	Ν	40,000 ĸH	
Эксцентриситет е _N -0,785 см 7.7.2.3 Эксцентриситет, принимаемый е _N 0,000 см в расчёт е _N 0,000 см Площадь эффективного сечения A _{er} 4,756 см ² Расчётный момент Wer 23,526 см ³ сопротивления сечения L 1,500 м Расчётная длина относительно Ietx 1,500 м оси х - х Iety 1,500 м	Изгибающий момент	M	421,875 кН·см	
Эксцентриситет, принимаемый в расчёт е _N 0,000 см В расчёт Площадь эффективного сечения A _{er} 4,756 см ² Расчётный момент сопротивления сечения W _{er} 23,526 см ³ Геометрическая длина замента L 1,500 м Расчётная длина относительно оси х - х I _{efx} 1,500 м Расчётная длина относительно оси у - у I _{efy} 1,500 м	Эксцентриситет	e _N	-0,785 см	7.7.2.3
Площадь эффективного сечения Аег 4,756 см² Расчётный момент сопротивления сечения Wer 23,526 см³ Геометрическая длина L 1,500 м элемента letx 1,500 м Расчётная длина относительно оси x - x letx 1,500 м Расчётная длина относительно оси y - y lety 1,500 м	Эксцентриситет, принимаемый в расчёт	e _N	0,000 см	
Расчётный момент Wer 23,526 см ³ сопротивления сечения L 1,500 м элемента L 1,500 м Расчётная длина относительно оси х - х letx 1,500 м Расчётная длина относительно оси y - y lety 1,500 м	Площадь эффективного сечения	A _{er}	4,756 cm ²	
Геометрическая длина L 1,500 м элемента L 1,500 м Расчётная длина относительно I,500 м оси х - х I 1,500 м Расчётная длина относительно I I оси у - у I 1,500 м	Расчётный момент сопротивления сечения	W _{ef}	23,526 cm ³	
Расчётная длина относительно І _{етх} 1,500 м оси х - х Расчётная длина относительно І _{ету} 1,500 м оси у - у	Геометрическая длина элемента	L	1,500 м	
Расчётная длина относительно І _{егу} 1,500 м оси у - у	Расчётная длина относительно оси x - x	l _{efx}	1,500 м	
	Расчётная длина относительно оси у - у	l _{efy}	1,500 м	

Рисунок 2.3.10, в – Результаты расчёта в Excel. Результаты проверок (продолжение)

Расчётная длина при			
крутильной форме потери	Lot	1,500 M	
устойчивости			
Расчётная длина при потере			
устойчивости плоской формы	L _{crLT}	1,500 M	
изгиба			
Приведённая гибкость	Χ.	0.358	7781
относительно оси х - х		0,000	
Приведённая гибкость	λ.	0.356	7781
относительно оси у - у	Ŷ	0,000	
Кривая потери устойчивости			
относительно оси х - х		b	7.7.8.1
Кривая потери устойчивости			
относительно оси у - у		b	7.7.8.1
Коэффициент устойчивости при	(1)	0.025	7781
центральном сжатии	Ψx	0,935	1.1.0.1
Коэффициент устойчивости при	(D)	0.936	7781
центральном сжатии	Ψγ	0,550	7.7.0.1
Критическая сила для			
крутильной формы потери	Nert	253,097 ĸH	7.7.8.4
устойчивости			
Критическая сила для изгибно-			
крутильной формы потери	N _{crTF}	217,635 кН	7.7.8.5
устойчивости			
Критический момент потери			
устойчивости плоской формы	M.,	17615.758 кН-см	Приложение Г
изгиба в упругой стадии	ŭ	,	
Условная гибкость при потере			
устойчивости плоской формы	π_{LT}	0,212	7.7.9.2
изгиба			
Кривая потери устойчивости			
(потеря устойчивости плоской		b	7.7.9.2
формы изгиба)			
Понижающий коэффициент			
при потере устойчивости	XLT	0,979	7.7.9.2
плоской формы изгиба			
Метод определения			
коэффициентов		1	
взаимодействия			
Коэффициент взаимодействия	k	1,142	
Расчётное сопротивление стали		-	
	Ry	338 H/mm ²	
Коэффициент условий работы	Ye	1	

Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)

Рисунок 2.3.10, г – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Параметр	Обозн.	Значение Ед.изм	. Пункт (формула) СП 260
Расчётное осевое усилие	N	40.000 vH	
сжатия	N .	40,000 MT	
Изгибающий момент	M _{y(x)}	421,875 кН∙см	
Эксцентриситет	e _N	-0,785 см	7.7.2.3
Эксцентриситет, принимаемый		0.000 cm	
в расчёт	CN CN	0,000 CM	
Площадь эффективного сечения	A _{er}	4,756 cm²	
Расчётный момент	W	23 526 cm ³	
сопротивления сечения	vvγ(x)ef	23,520 CM	
Геометрическая длина	1	1 500 M	
элемента	-	1,500 M	
Расчётная длина относительно	L.	1 500 M	
оси х - х	-erx	2,200	
Расчётная длина относительно	lan.	1.500 M	
оси у - у		-,	
Расчётная длина при			
крутильной форме потери устойчивости	L _{erT}	1,500 M	
Расчётная длина при потере			
устойчивости плоской формы	L _{crLT}	1,500 M	
изгиба			
Приведённая гибкость	π.	0.358	7781
относительно оси х - х		0,000	
Приведённая гибкость	π.	0.356	7.7.8.1
относительно оси у - у	· Y	-,	
Кривая потери устойчивости			
относительно оси х - х		b	7.7.8.1
Кривая потери устойчивости			
относительно оси у - у		ь	7.7.8.1
Коэффициент устойчивости при	(1)	0.035	7781
центральном сжатии	Ψχ	0,555	7.7.0.1
Коэффициент устойчивости при	(D	0.936	7781
центральном сжатии	Ψy	0,000	7.7.0.1
Критическая сила при			
крутильной форме потери	N _{erT}	253,097 ĸH	7.7.8.4
устойчивости			
Критическая сила при изгибно-			
крутильной форме потери	N _{crTF}	217,635 кН	7.7.8.5
устойчивости			
Условная гибкость при			
крутильной/изгибно-	π-	0.860	7.7.8.3
крутильной форме потери		-,	
устойчивости			

Рисунок 2.3.10, д – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

	Элементы		
Кривая потери устойчивости			
при крутильной/изгибно-		ь	7783
крутильной форме		0	1.1.0.3
Коэффициент устойчивости при			
крутильной/изгибно-	(D-	0 703	7783
крутильной форме потери	ΨI	0,700	1.1.0.0
устойчивости			
Расчетный понижающий	φ	0,703	
коэффициент			
потери устойчивости плоской			
формы изгиба	M _{cr}	17615,758 кН-см	Приложение Г
•			
Условная гибкость при потере			
устойчивости плоской формы	Τ _{LT}	0,212	7.7.9.2
изгиба			
Кривая потери устойчивости			
(потеря устойчивости плоской		b	7.7.9.2
формы изгиба)			
Понижающий коэффициент			
при потере устойчивости	XLT	0,979	7.7.9.2
плоской формы изгиба			
Расчётное сопротивление стали	Rv	338 H/mm ²	
V			
коэффициент условии работы	Yc	1	

Рисунок 2.3.10,е – Результаты расчёта в Excel. Результаты проверок (окончание)

2.3.2. Сжатый с изгибом элемент из спаренных С-образных профилей по СП 260.1325800.2016

Задание: Выполнить проверку устойчивости сжато-изгибаемого элемента из спаренных С-образных профилей. Исходные данные взяты из Примера L документа Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123 [10]. Элемент моделирует колонну фахверка. С-профили соединены дискретно парми болтов, расположенных в третях высоты профиля. Диаметр отверстий d = 18 мм. Согласно [10], колонна представляет собой шарнирно опёртый стержень, загруженный осевой сжимающей силой и тремя поперечными силами от давления ветра, приложенными в местах крепления стеновых прогонов к норужным поясам спаренных С-профилей элемента (Рисунок 2.3.11 [10]).

Расчёты производятся для двух вариантов загружения: активное и пассивное давление ветра. В [10] абсолютные значения сил *F* для активного и пассивного давления приняты одинаковыми.

Рисунок 2.3.11 – Данные для расчёта [10]: а) - расчётная схема; б) – внутренние усилия

Высота $L = 8 \, m$, расстояние $x_{FI} = 2 \, m$, $x_{F2} = 4 \, m$, $x_{F3} = 6 \, m$, шаг стеновых прогонов $g = 2 \, m$, расстояние между раскреплениями поясов $f = 4 \, m$. $N = 40 \, kH$, $F = 8 \, kH$, Максимальный изгибающий момент $M = 32 \, kHm$. Максимальная поперечная сила $Q = 12 \, \kappa H$.

Параметр	Обозначение	Ед. изм.	Значение
Расчётная длина относительно оси х - х	l _{efx}	М	8
Расчётная длина относительно оси у - у	l_{efy}	М	2
Расчётная длина при крутильной форме потери устойчивости	l_T	М	4
Расчётная длина при потере устойчивости плоской формы изгиба (наружные пояса сжаты при изгибе)	l_{LT}	М	2
Расчётная длина при потере устойчивости плоской формы изгиба (внутренние пояса сжаты при изгибе)	l_{LT}	М	4
Коэффициент эффективной длины, зависящий от условий закрепления торцевых сечений от поворота относительно более слабой оси у - у	k		1
Коэффициент эффективной длины, зависящий от условий закрепления торцевых сечений от депланации	k_w		1
Коэффициент (наружные пояса сжаты при изгибе)	C_1		1,141
Коэффициент (внутренние пояса сжаты при изгибе)	C_1		1,879
Коэффициент	C_2		0

Таблица 2.3.2 – Расчётные длины и коэффициенты [10]

Размеры сечения (Рисунок 2.3.12): h = 250 мм, t = 2,5 мм, $b_f(b) = 80$ мм, c = 40 мм, r = 5 мм, S = 0, $\alpha = 90^0$.

Рисунок 2.3.12 – Размеры сечения

Номинальное значение предела текучести $R_{yn} = 350 \ H/mm^2$. Коэффициент надёжности по материалу в соответствии с п.6.3 [1] $\gamma_m = 1,05$. $R_y = 333,3 \ H/mm^2$. $t_{m,p} = 0$. Модуль упругости $E = 206000 \ H/mm^2$. В [10] $E = 210000 \ H/mm^2$, частный коэффициент $\gamma_{M0} = 1,0$. Коэффициент условий работы примем равными 1,0 (с целью сопоставления результатов с ЕСЗ). Решение: Соотношение размеров (п.7.1.1 [1]):

 $b/t = 80/2, 5 = 32 \le 100 \qquad c/t = 40/2, 5 = 16 \le 40$ $h/t = 250/2, 5 = 100 \le 300.$ $\Pi. 7.1.2 \ [1]: \quad 0, 2 \le c/b \le 0, 5 \qquad c/b = 40/80 = 0, 5$

Срединная линия радиуса закругления

r_m= r+t/2=0,5+0,125=0,625 см Параметр *g_r* (Рисунок 7.3 [1]) $g_r = r_m \left(tg\left(\frac{\varphi}{2}\right) - sin\left(\frac{\varphi}{2}\right) \right) = 0,625 \cdot (1-0,707) = 0,183$ см Длина дуги закругления $u = \pi/2 \cdot r_m = 0,981 \ см$ Расстояние от центра дуги до центра тяжести дуги $v = 0,637 r_m = 0,398 см$ $w = 0,363 r_m = 0,227 cm$ $v + w = r_m$ Теоретические ширины $h_p = h - 2(g_r + t/2) = 25 - 2(0,183 + 0,125) = 24,384 \text{ cm}$ $b_p = b - 2(g_r + t/2) = 8 - 2(0, 183 + 0, 125) = 7,384 \text{ cm}$ $c_p = c - (g_r + t/2) = 4 - (0,183 + 0,125) = 3,692 \text{ cm}$ Размеры по срединным линиям сечения $h_c = h - t = 24,75$ см $b_c = b - t = 7,75$ см cc = c - t/2 = 3,875 cmПлощадь дуги закругления $A_{RC} = u \cdot t = 0,2453 \ cm^2$ Момент инерции дуги закругления $I_{RC} = \frac{\pi}{4} r_m t \left(r_m^2 + \frac{t^2}{4} \right) - A_{RC} v^2 = 0,010921 \ cm^4$

Геометрические характеристики полного сечения по [10] и вычисленные в CFSteel приведены в Таблице 2.3.3. В обоих случаях геометрические характеристики вычисляются с учётом закругления в местах гиба, за исключением секториального момента инерции.

Параметр	Обозна чение	Ед. изм.	Значение [10]	Значение CFSteel	Расхож дение, %
Площадь сечения	A_g	см ²	23,463	23,463	0
Момент инерции относительно оси х - х	I_x	см4	2161,9	2162,1	0
Момент инерции относительно оси у - у	I_{y}	см4	386,3	386,3	0
Радиус инерции	i_x	СМ	9,599	9,599	0
	i_{y}	СМ	4,058	4,058	0
Момент сопротивления сечения	W_x	cm ³	-	172,965	-
Момент инерции при кручении	I_t	см4	0,4872	0,4872	0
Секториальный момент инерции (без учёта радиусов в местах гиба)	I_w	см ⁶	74458	74458	0

Таблица 2.3.3 - Геометрические характеристики полного сечения

Эффективное сечение (равномерное сжатие)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	2,064	2,063	0
Коэффициент редуцирования	ρ		(7.13)	0,433	0,433	0
Эффективная часть	h_{ef}	MM	Таблица 7.2	105,55	105,57	0
	h_{e1}	MM		52,77	52,79	0,04
	h_{e2}	MM		52,77	52,79	0,04

В Таблице 2.3.5 приведено сравнение значений параметров эффективности стенки, полученных по СП 260, с соответствующими значениями Примера L [10], полученными по ЕСЗ. В Примере L в соответствии с нормами ЕСЗ принималось: $E=210000 \text{ N/mm}^2$, $f_y = 350 \text{ N/mm}^2$, частный коэффициент $\gamma_{M0} = 1,0$. Результаты сравнения приведены в столбце 6 Таблицы 2.3.5. Расхождение составляет 1,4...1,8%. Также были выполнены расчёты по методике СП 260, но исходные данные принимались как в Примере L [10]: $E=210000 \text{ N/mm}^2$, $R_{yn} = f_y = 350 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0} = 1,0$. Расчёт выполнен в программе CFSteel. Сравнение результатов, полученных таким образом, с данными Примера L [10] приведено в столбцах 7 и 8. Отмечается практическое совпадение результатов. Это говорит о том, что методика определения эффективных ширин пластинки, заложенная в СП 260 в целом совпадает с методикой ЕСЗ. Различие заключается в разных значениях модуля упругости *E* и коэффициентов: частного коэффициента γ_{M0} и коэффициента надёжности по материалу γ_m .

Наименование	Обозн.	Ед. изм.	Значение по [10] (EC3)	Значение по СП 260 (CFSteel)	Расхожде ние,%	Значение по СП 260 [*] (CFSteel)	Расхожде ние [*] ,%
1	2	3	4	5	6	7	8
Гибкость пластинки	$\overline{\lambda_p}$		2,10	2,063	1,8	2,094	0,3
Коэффициент	ρ		0,427	0,433	1,4	0,427	0
редуцирования							
Эффективная часть	h_{ef}	MM	104,14	105,57	1,4	104,203	0,06
	h_{el}	MM	52,07	52,79	1,4	52,10	0,06
	h_{e2}	MM	52,07	52,79	1,4	52,10	0,06

^{*}- Результаты получены по СП 260 но с $E=210000 \text{ N/mm}^2$, $R_{yn}=350 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0}=1,0$

Эффективные размеры сжатого пояса с отгибом (одинарное сечение)

Таблица 2.3.6 – Параметры пояса и о	отгиба ($K=\infty$, σ_{cc}	$_{om} = R_{\rm v}$
-------------------------------------	-------------------------------------	---------------------

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхож дение, %		
Пояс								
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	0,624	0,625	0,2		
Коэффициент редуцирования	ρ		(7.13)	1	1	0		
Эффективная ширина	b_{ef}	MM	Табл. 7.2	73,84	73,84	0		
	b_{el}	MM		36,92	36,92	0		
	b_{e2}	ММ		36,92	36,92	0		
Отгиб								
Коэффициент потери	kσ		7.3.2.6	0,737	0,734	0,4		
устойчивости								

Элементы							
Гибкость пластинки	$\overline{\lambda_p}$		(7.18)	0,728	0,729	0,1	
Коэффициент редуцирования	$\hat{\rho}$		(7.15)	1	1	0	
Эффективная ширина	C_{ef}	MM	Табл. 7.2	36,92	36,92	0	

В таблице 2.3.7 приведено сравнение значений параметров эффективности пояса и отгиба, полученных по СП 260, с соответствующими значениями Примера L [10], полученными по ЕСЗ. В Примере L в соответствии с нормах ЕСЗ принималось: $E=210000 \text{ N/mm}^2$, $f_y = 350$ *N/mm*², частный коэффициент $\gamma_{M0} = 1,0$. Результаты сравнения приведены в столбце 6. Расхождение составляет до 0,8%. В столбцах 7 и 8 приведены результаты вычислений по методике СП 260, но исходные данные принимались как в Примере L [10], т.е.: E=210000 N/mm^2 , $R_{yn} = f_y = 350 N/mm^2$, $\gamma_m = \gamma_{M0} = 1,0$. Расчёт выполнен в CFSteel. Отмечается совпадение результатов.

Таблица 2.3.7 – Пара	метры пояс	са и от	тиба . Сра	внение резуль	татов по С	П 260 и ЕСЗ	
			2000000000	200000000000000000000000000000000000000		200000000000000000000000000000000000000	E

Наименование	Обозн.	Ед. изм.	Значение по [10] (EC3)	Значение по СП 260 (CFSteel)	Расхожде ние,%	Значение по СП 260 [*] (CFSteel)	Расхожде ние [*] ,%	
1	2	3	4	5	6	7	8	
Пояс								
Гибкость пластинки	$\overline{\lambda_p}$		0,63	0,625	0,8	0,634	0,6	
Коэффициент	ρ		1	1	0	1	0	
редуцирования Эффективная ширина	$b_{e\!f}$	ММ	73,84	73,84	0	73,84	0	
	b_{el}	ММ	36,92	36,92	0	36,92	0	
	b_{e2}	MM	36,92	36,92	0	36,92	0	
Отгиб								
Гибкость пластинки	$\overline{\lambda_p}$		0,74	0,734	0,8	0,74	0	
Коэффициент	ρ		1	1	0	1	0	
редуцирования Эффективная ширина	C _{ef}	ММ	36,92	36,92	0	36,92	0	

*- Результаты получены по СП 260 но с $E=210000 \text{ N/mm}^2$, $R_{yn}=350 \text{ N/mm}^2$, $\gamma_m = \gamma_{M0}=1,0$

Шаг 2: Снижение несущей способности краевого элемента жёсткости за счёт потери устойчивости формы сечения (плоская форма потери устойчивости элемента жёсткости)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Таблица 2.3.8 – Эффективные	е характерис	тики краевого	элемента жёсткости
-----------------------------	--------------	---------------	--------------------

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%	
Эффектив	ные характе	ристики в	раевого элем	ента жёсткос	ГИ		
Площадь	A_S	см ²		1,8703	1,8704	0	
Расстояние между срединной	e_S	MM		10,07	10,07	0	
линией пояса и осью							
элемента жёсткости							
Расстояние между срединной	b_1	MM		67,43	67,43	0	
линией стенки и осью							
элемента жёсткости							
Эффективный момент	I_S	CM ⁴		2,9581	2,9571	0,03	
инерции							
Жёсткость связи							

Элементы						
Жёсткость связи	Κ	кH/см ²	(7.29)	0,0443	0,443	0
Критическое напряжение	$\sigma_{cr,s}$	кН/см ²	(7.28)	55,56	55,57	0,02
потери устойчивости краевого						
отгиба						
Гибкость	$\overline{\lambda_d}$		7.3.2.9	0,774	0,775	0,1
Коэффициент снижения	χd		7.3.2.9	0,910	0,910	0
несущей способности ребра						

Шаг 3: Уточнение коэффициента снижения несущей способности итерационным расчётом (Приложение Б [1])

Поскольку результаты, полученные с помощью программы на предыдущем шаге, практически совпадают с результатами ручного расчёта, приводим итерационное уточнение, выполненное по программе (Таблица 2.3.9). Условие окончания итерационного процесса, заложенное в программе: итерации заканчиваются при разнице в значениях $\chi_{d i}$ и $\chi_{d i-1}$, не превышающей 0,1%.

Таблица 2.3.9 – Итерационный процесс уточнения эффективных параметров элемента жёсткости

Параметр			Ед.	Начальный	Первая
			ИЗМ.	расчёт	итерация
Элемент	Коэффициент снижения несущей	$X_{d,n-1}$		1,0	0,910
	способности				
Пояс	Гибкость пластинки	$ar{\lambda}_{ m pi}$		0,625	0,596
$\psi = 1$	Коэффициент редуцирования	ρ		1,0	1,0
$k_{\sigma}=4$	Эффективная ширина	b_{e2}	MM	36,92	36,92
Отгиб	Гибкость пластинки	$ar{\lambda}_{ m pi}$		0,729	0,696
$\psi = 1$	Коэффициент редуцирования	ρ		1,0	1,0
$k_{\sigma} = 0,734$	Эффективная ширина	C_{ef}	MM	36,92	36,92
Элемент	Эффективная площадь	A_s	см ²	1,8704	1,8704
жёсткости	Расстояние	b_1	см	6,743	6,743
	Момент инерции	I_s	см ⁴	2,9571	2,9571
	Жёсткость связи	K_1	кH/	0,0443	0,0443
			см ²		
	Критическое напряжение потери	$\sigma_{cr,s}$	κН/	55,57	55,57
	устойчивости краевого отгиба		см ²		
	Коэффициент снижения	$X_{d,n}$		0,910	0,910
	Редуцированная площадь	$A_{s,red}$	см ²	1,702	1,702

 $t_{red} = t \cdot A_{s,red} / A_s = 2,5 \cdot 1,702 / 1,8704 = 2,27 \text{ mm}$

Как видно из Таблицы, дальнейшего уточнения размеров элемента жёсткости не потребовалось. Поэтому, для дальнейших расчётов принимаем размеры элемента жёсткости, в том числе *A_{s,red}* и *t_{red}*, полученные на *Шаге 2*.

Геометрические характеристики эффективного сечения

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Геометрические характеристики эффективного сечения при равномерном сжатии в сравнении полученными в CFSteel, приведены в Таблице 2.3.11.

Эффективное сечение (изгиб относительно оси x – x)

Эффективные размеры сжатого пояса с отгибом (одинарное сечение)

Шаг 1: Эффективные размеры в предположении, что жёсткость, накладываемая отгибом на пояс $K = \infty$ и напряжение $\sigma_{com} = R_y$

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Шаг 2: Снижение несущей способности краевого элемента жёсткости за счёт потери устойчивости формы сечения (плоская форма потери устойчивости элемента жёсткости)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Наименование	Обозн.	Ед. изм.	Пункт (формула) СП 260	Значение	Значение CFSteel	Расхожд ение,%
Эффектив	ные характе	еристики в	раевого элем	ента жёсткос	ГИ	
Площадь	A_S	см ²		1,8703	1,8704	0
Расстояние между срединной	e_S	MM		10,07	10,07	0
линией пояса и осью элемента жёсткости Расстояние между срединной линией стенки и осью элемента жёсткости Эффективный момент инерции	b ₁ I _S	мм см ⁴		67,43 2,9581	67,43 2,9590	0 0,03
Жёсткость связи						
Жёсткость связи Критическое напряжение потери устойчивости краевого отгиба	$K \sigma_{ m cr,s}$	кH/см ² кH/см ²	(7.29) (7.28)	0,0618 65,60	0,0618 65,6	0 0
Гибкость	$\overline{\lambda_d}$		7.3.2.9	0,712	0,713	0,1
Коэффициент снижения несущей способности ребра	χ _d		7.3.2.9	0,955	0,955	0

Таблица 2.3.10 – Эффективные характеристики краевого элемента жёсткости

Эффективные размеры стенки (одинарный профиль)

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Геометрические характеристики эффективного сечения

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Таблица 2.3.11 – Геометрические характеристики эффективного сечения

Параметр	Обозна чение	Ед. изм.	Значение	Значение CFSteel	Расхож дение, %
----------	-----------------	-------------	----------	---------------------	-----------------------

Эффективное сечение (сжатие)						
Площадь сечения	A_{ef}	CM ²	15,889	15,877	0,08	
Момент инерции относительно оси <i>х</i> - <i>х</i>	I _{xef}	см4	1965,67	1963,88	0,09	
Момент инерции относительно оси у - у	I _{vef}	см4	352,46	353,37	0,3	
Радиус инерции	i _{xef}	СМ	11,123	11,122	0	
	i _{vef}	СМ	4,710	4,718	0,2	
Эффективное сечение (изгиб относительно оси х - х)						
Площадь сечения	A_{ef} cm^2		23,294	23,294	0	
Положение центра тяжести						
эффективного сечения по оси у - у			10,000	10.000		
относительно срединной оси нижнего	<i>Y</i> cgef	СМ	12,292	12,292	0	
пояса						
Момент инерции относительно оси x - x	I _{xef}	см4	2139,99	2139,73	0,01	
Радиус инерции относительно оси <i>x</i> - <i>x</i>	<i>i_{xef}</i>	СМ	9,585	9,584	0	
Момент сопротивления сечения	W_{xef}	cm ³	170,070	170,052	0,01	

Прочность элемента при действии поперечной силы (п.7.7.6 [1])

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Прочность элемента при сжатии с изгибом с учётом отверстий при $Q < 0,5Q_w$ (nn.7.7.4, 7.7.5 [1])

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Устойчивость элемента при сжатии с изгибом В соответствии с п.7.7.10.4 [1]

$$\left(\frac{N}{\varphi_x A_{ef} R_y}\right)^{0,8} + \left(\frac{M}{\chi_{LT} W_{x,ef} R_y}\right)^{0,8} \le 1$$

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Далее приведены результаты расчётов для варианта со сжатыми от изгиба наружными поясами элемента.

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Условие устойчивости (п.7.7.10.4 [1])

$$\left(\frac{40}{0,755\cdot 15,889\cdot 33,33}\right)^{0,8} + \left(\frac{3200}{0,912\cdot 170,07\cdot 33,33}\right)^{0,8} = 0,840 < 1.$$

Расчёт по п. 7.7.10.3[1]

Для сжатых с изгибом элементов должны выполняться условия:

$$\frac{N}{\varphi_x A_{ef} R_y \gamma_c} + k_{xx} \frac{M_x}{\chi_{LT} W_{x,ef} R_y \gamma_c} \le 1 ,$$

$$\frac{N}{\varphi_{y}A_{ef}R_{y}\gamma_{c}} + k_{yx}\frac{M_{x}}{\chi_{LT}W_{x,ef}R_{y}\gamma_{c}} \le 1$$

Расчёт коэффициентов взаимодействия k_{xx} и k_{yx} по Таблицам В.1 и В.2 [1] (Метод 1):

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Формулы взаимодействия (п. 7.7.10.3[1])

$$\frac{40}{0,755 \cdot 15,889 \cdot 33,33} + 1,042 \frac{3200}{0,912 \cdot 170,07 \cdot 33,33} = 0,745 < 1,$$
$$\frac{40}{0,877 \cdot 15,889 \cdot 33,33} + 1,055 \frac{3200}{0,912 \cdot 170,07 \cdot 33,33} = 0,739 < 1.$$

Расчёт коэффициентов взаимодействия k_{xx} и k_{yx} по Таблицам B.4 и B.5 [1] (Метод 2):

Полный ручной расчёт приведён в версии Верификационных расчётов, передаваемой лицензированным пользователям при поставке ПО CFSteel

Формулы взаимодействия (п. 7.7.10.3[1])

$$\frac{40}{0,755 \cdot 15,889 \cdot 33,33} + 0,947 \frac{3200}{0,912 \cdot 170,07 \cdot 33,33} = 0,686 < 1,$$

$$\frac{40}{0,904 \cdot 15,889 \cdot 33,33} + 0,997 \frac{3200}{0,912 \cdot 170,07 \cdot 33,33} = 0,703 < 1.$$

. . . .

Полученные результаты расчёта сведены в Таблицу 2.3.12. Также в таблице содержатся соответствующие результаты, полученные в CFSteel .

Параметр	Обозн.	Ед. изм.	Пункт (формула) СП 260	Ручной расчёт	CFSteel	Расхо ждене, %
Условная гибкость стенки	$\overline{\lambda_w}$	-	(7.80)	1,370	1,378	0,5
Расчётное напряжение при сдвиге	R_s	$\kappa H/cm^2$	Табл. 7.4	11,68	11,61	0,6
Несущая способность поперечного	Q_w	кН	(7.79)	144,54	143,70	0,6
сеченияпри действии поперечной силы						
Отношение Q / Q_w		-		0,083	0,084	1,2
Левая часть проверки на прочность	-	-	7.7.4	0,641	0,640	0,2
Приведённая гибкость относительно оси <i>x</i> – <i>x</i>	$\overline{\lambda_x}$	-	7.7.8.1	0,878	0,878	0
Приведённая гибкость относительно оси у -у	$\overline{\lambda_y}$	-	7.7.8.1	0,519	0,519	0
Коэффициент устойчивости при центральном сжатии по изгибной форме	φ_x	-	СП 16	0,755	0,755	0
Коэффициент устойчивости при центральном сжатии по изгибной форме	φ_y	-	СП 16	0,877	0,877	0
Критическая сила потери устойчивости по	N _{cr,x}	кН		686,8	686,8	0
изгибной форме относительно оси x – x Критическая сила потери устойчивости по изгибной форме относительно оси y – y	N _{cr,y}	ĸН		1964	1963,7	0

Таблица 2.3.12 – Сопоставление результатов расчётов

Критическая сила по крутильной форме	N	U	(7.00)	006 7	0067	0
потери устойчивости	$IN_{cr,T}$	КП	(7.90)	900,7	900,7	0
Критическая сила по изгибно-крутильной	3.7	. 11	7702	0067	0067	0
форме потери устойчивости	N _{cr,TF}	кН	1.1.8.3	906,7	906,7	0
Условная гибкость при крутильной						
(изгибно-крутильной) форме потери	$\frac{\lambda_m}{\lambda_m}$		(7.89)	0.764	0.764	0
устойчивости	<i><i>n</i>₁</i>		(.,	-,	Ŭ
Коэффициент устойчивости по крутильной						
(изгибно-крутильной) форме	φ_T		7.7.8.3	0,760	0,760	0
(пятнопо круппаноп) форме Минимальный коэффициент	(0)			0.755	0.755	0
Ипругий критинеский момент потери	φ_{min}		Прилож	0,755	0,755	0
устойчивости плоской формы изгиба	M_{cr}	кНсм	ение Г	31230	31236	0
Условная гибкость	1	-	(7.96)	0 426	0 426	0
Понижающий коэффициент при потере	n_{LT}		(1.50)	0,120	0,120	Ũ
устойчивости плоской формы изгиба	χ_{LT}	-	(7.94)	0,916	0,916	0
Понижающий коэффициент при потере			CTT 16	0.012	0.012	0
устойчивости плоской формы изгиба	χ_{LT}	-	CII 16	0,912	0,912	0
Левая часть проверки устойчивости			(7, 101)	0.840	0.840	0
элемента	_	_	(7.101)	0,040	0,040	0
Критический момент потери устойчивости	M_{cr0}	кНсм	Прилож	27371	27399	0,1
плоской формы изгиба в упругой стадии			ение Г			
при постоянном значении изгибающего						
момента по длине элемента						
Условная гибкость при потере	$\overline{\lambda_0}$		Прилож	0,455	0,455	0
устойчивости плоской формы изгиба при	Ũ	-	ение В			
постоянном моменте по длине элемента						
Предельное значение условной гибкости	$\lambda_{0 \ lim}$	-		0,211	0,211	0
при потере устоичивости плоской формы						
изгиоа при постоянном моменте по длине						
Коэффициент перехода к эквивалентной	C		Таблициа	0 956	0.956	0
прямоугольной эпюре моментов	<i>€m,x0</i>		B.2	0,950	0,200	Ũ
Параметр	<i>a</i>	_		0 000	0 999	0
Коэффициент	C_{LT}	_		0,998	0,988	0
Коэффициент	$C_{m,x}$	-		1.008	1.009	0.1
Параметр	μ_x	-	Таблициа	0.085	0.085	0
	•		B.1	0,985	0,985	0
Параметр	μ_y	-	Таблициа	0,997	0,997	0
M_{emod} / Tabu B 1 H B 2 [1]			D.1			
Коэффициент взаимолействия k	<i>k</i>	-	Таблициа	1.042	1.043	0.1
	,,,		B.1	_,	-,	-,-
Коэффициент взаимодействия k_{yx}	k_{yx}	-	Таблициа	1,055	1,056	0,1
H (7.00)			B.1	0745	0.746	0.1
Левая часть неравенства (7.100)			$\Pi././.10.3$ π 7 7 10 3	0,745	0,746	0,1
M_{emod} 2 Табл В 4 и В 5 [1]			11.7.7.10.5	0,739	0,740	0,1
Коэффициент взаимолействия k	k	-	Таблициа	0.947	0.947	0
1 1	11		B.4	-,,	-,,	2
Коэффициент взаимодействия k_{yx}	k_{yx}	-	Таблициа	0,997	0,997	0
$\square_{\text{ADAG}} \sqcup_{\text{ADAGT}} \sqcup_{\text{ADADADAGTDA}} (7.00)$			B.4 π 7 7 10 3	0.696	0.696	0
Левая часть неравенства (7.37) Певая часть неравенства (7.100)			π.7.7.10.3	0,000	0,080	0
repair ide ib inepaberie iba (7.100)	1	1		0,705	0,705	

Результаты расчёта в программе CFSteel представлены на Рисунках 2.3.13 – 2.3.29.

Сжатие с изгибом [СП260]	×
<u>Н</u> аименование элемента Колонна фахверка Длина элемента L 8 м	Сечение
Расчётное осевое усилие скатия N 40 кH К-т условий работы (уст-ть) Y _c 1 ✓ Расчётный момент (устойчивость) M 3200 кH см К-т условий работы (прочность) Y _c 1 ✓ Расчётный момент (прочность) M 3200 кH см Q 12 кH Проверка прочности © Ввод расчётной длины: ОВвод к-тов приведения длины: Расчётная длина относительно оси x - x l _{efx} 8 м К-т приведения длины μ _x 1 ✓ Расчётная длина относительно оси y - y l _{efy} 2 м К-т приведения длины μ _y 1 ✓ Расчётная длина: О ввод к-тов приведения длины μ _x 1 ✓ Расчётная длина относительно оси y - y l _{efy} 2 м К-т приведения длины μ _y 1 ✓ Расчётная длина: плоская форма L _o T 4 м Устойчивость плоской формы изгиба Расчётная длина: плоская форма изгиба L _{otT} 2 м M _{or} 0 кH см	
Коэффициент стеснения депланации концов элемента k _w 1 v Коэффициент C ₁ 1,14 Коэффициент C ₂ 0 Уровень приложения нагрузки	Выбрать С 250х80х40х2,5 ЕССS L Сталь Группа стандартов ЕN Стандарт ЕN 10147
Эпюра моментов М1 ФИ1 -1< Ф41 Ослабление Выбрать d 18 мм а1 83,3 мм а2 83,3 мм	Сталь S350GD V R _{уп} 350 H/нм ² R _{un} 420 H/нм ² Комментарии

Рисунок 2.3.13 – Ввод исходных данных (вычисление коэффициентов взаимодействия k_{ij} по *Memody 1*)

Рисунок 2.3.14 – Результаты расчёта. Общие данные

Рисунок 2.3.15 – Результаты расчёта. Характеристики полного сечения

Рисунок 2.3.16 – Результаты расчёта. Характеристики эффективного сечения (сжатие)

С Результаты				_		
Общие данные Характеристики полного сечения	Характеристики эф	фективного сечения	Характеристики эффективно	го сечения (изгиб) : •	۲
Наименование характеристики	Обозн.	Значение Ед.изм.	<u>□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ </u>	Y	A	
Площадь поперечного сечения	A _{ef}	23,294 cm ²	(TY			
Момент инерции относительно оси х - х	I _{x ef}	2139,727 см ⁴				
Момент сопротивления сечения для верхнего пояса	w _{xs ef}	170,052 cm ³				
Момент сопротивления сечения для нижнего пояса	W _{xH ef}	172,320 см ³				
Радиус инерции относительно оси х - х	i _{x ef}	9,584 cm		u 	-	
Момент инерции относительно оси у - у	I _{y ef}	378,060 cm ⁴			X	
Момент сопротивления сечения относительно оси у	y-y W _{yef}	47,258 cm ³				
Радиус инерции относительно оси у - у	i _{y ef}	4,029 см				
					_	
L						
			Excel 3	акрыть	Справка	

Рисунок 2.3.17 – Результаты расчёта. Характеристики эффективного сечения (изгиб)

С Результаты					_		×
Характеристики эффективного сечения (изгиб) Харак	теристики сечен	ия нетто р	Результаты расчёта				4 •
Наименование характеристики	Обозн.	Значение	Ед.изм.		٨Y		
Площадь поперечного сечения	A	21,663	cm ²		Ŷ	1	
Момент инерции относительно оси х - х	Ix	2130,372	cm ⁴				
Момент сопротивления сечения для верхнего волокна	W _{xB}	170,435	cm ³				
Момент сопротивления сечения для нижнего волокна	W _{XH}	170,424	cm ³				
Радиус инерции относительно оси х - х	i _x	9,917	см		• • • • • • •	- >	
Момент инерции относительно оси у - у	Iy	386,296	cm ⁴			×	
Момент сопротивления сечения относительно оси у - у	Wy	48,287	cm ³				
Радиус инерции относительно оси у - у	iy	4,223	CM				
			>				
-							
				Excel	Закрыть	Спр	равка

Рисунок 2.3.18 – Результаты расчёта. Характеристики сечения нетто

С Результаты			_	[×
Характеристики эффективного сечения (изгиб) Характеристики сечения нетто Результать	і расчёта					• •
Проверка	Расч	ётное неравенство	Знач	ение	I	Тункт <mark>(с</mark>
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N}{A_{efn}R_{y}}$	$\frac{M_x}{V_c} + \frac{M_x}{W_x R_y \gamma_c} \le 1$	0,64	0 < 1	•	7.7.4
Расчёт на поперечную силу		$Q/Q_{w} \leq 1$	0,08	4 < 1	1	7.7.6
Расчёт на прочность отдельной ветви при сжатии с изгибом	$\frac{N_1}{A_1 R_y \gamma_c}$ +	$\frac{M_{1x0}}{W_{1x0ef}R_y\gamma_c} + \frac{e_1 \cdot N_1}{W_{1y0ef}R_y\gamma_c}$	≤1 0,73	7 < 1	~	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_x A_{ef} R_y \gamma_0}$	$\frac{M_x}{c} + k_{xx} \frac{M_x}{\chi_{LT} W_{xef} R_y \gamma_c} \le 1$	0,74	6 < 1	•	7.7.10.3
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.100)	$\frac{N}{\varphi_y A_{ef} R_y \gamma_i}$	$\frac{1}{c} + k_{yx} \frac{M_x}{\chi_{LT} W_{xef} R_y \gamma_c} \le 1$	0,74	0 < 1	1	7.7.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\left(\frac{N}{\varphi A_{ef} R_{y} \gamma_{c}}\right)$	$\int_{1}^{0,8} + \left(\frac{e_N N + M_{y(x)}}{\chi_{LT} W_{y(x)ef} R_y \gamma_c}\right)^{0,8}$	≤1 0,84	0 < 1	•	7.7.10.4
٢						>
Расчёт на прочность сечения нетто при сжатии с изгибом						
Параметр	Обозн.	Значение Ед.изм.	Пункт ((форму	ла)	СП 260
Расчётное осевое усилие скатия	N	40,000 кН				
Расчётный изгибающий момент	M _x	3200,000 кН см				
Площадь эффективного сечения	A _{ef}	15,877 см ²				
Расчётный момент сопротивления сечения	W _x	170,052 cm ³				
Расчётное сопротивление стали	Ry	333 Н/мм ²				
Коэффициент условий работы	Yc	1				
		Excel 3a	акрыть		Спр	авка

С Результаты				— [×
Характеристики эффективного сечения (изгиб) Характеристики сечения нетто	Результаты расч	чёта				4 •
Проверка		Расчётное нера	венство	Значение	I	Пункт (с
Расчёт на прочность сечения нетто при скатии с изгибом	Aef	$\frac{N}{V_n R_y \gamma_c} + \frac{M_x}{W_x R_y \gamma_c}$	≤1	0,640 < 1	~	7.7.4
Расчёт на поперечную силу		Q/Q _w ≤	1	0,084 < 1	✓ :	7.7.6
Расчёт на прочность отдельной ветви при сжатии с изгибом	$\frac{N_{i}}{A_{1}R}$	$\frac{1}{R_y \gamma_c} + \frac{M_{ix0}}{W_{ix0ef} R_y \gamma_c} + \frac{1}{N_{ix0ef}}$	$\frac{e_1 \cdot N_1}{V_{1y0ef}R_y\gamma_c} \leq$	1 0,737 < 1	~	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (7.99) — — — — — — — — — — — — — — — — — —	$\frac{N}{e_f R_y \gamma_c} + k_{xx} \frac{M_x}{\chi_{LT} W_{xey}}$	$\frac{1}{R_y \gamma_c} \le 1$	0,746 < 1	~	7.7.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (7.100) $\frac{1}{\varphi_y A}$	$\frac{N}{A_{ef}R_y\gamma_c} + k_{yx}\frac{M_y}{\chi_{LT}W_{xey}}$	$\frac{1}{\sqrt{R_y \gamma_c}} \le 1$	0,740 < 1	~	7.7.10.3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (7.101) (_{<i>фА</i>}	$\frac{N}{e_f R_y \gamma_c} \bigg)^{0.3} + \bigg(\frac{e_N N + \chi_V \gamma_c}{\chi_{LT} W_{\gamma/2}} \bigg)^{0.3}$	$\left(\frac{M_{y(x)}}{\log R_{y}\gamma_{c}}\right)^{0.8} \leq$	1 0,840 < 1	~	7.7.10.4
٢						>
Расчёт на поперечную силу						
Параметр	06	озн. Значение	Ед.изм. П	іункт <mark>(фор</mark> му	ла)	CII 260
Расчётная поперечная сила	Q	12,000	кН			
Расчётная высота стенки	sw	247,5	мм 7	.7.6		
Расчётная толщина	t	2,5	мм			
Условная гибкость стенки	λw	1,378	7	.7.6		
Расчётное сопротивление стали сдвигу	Rs	116	Н/мм ² 7	.7.6		
Расчётная несущая способность сечения от действия поперечной силы	Qw	, 143,697	KH (7.7.9)		
		Excel	3a r	крыть	Спр	равка

С Результаты				_			×
Характеристики эффективного сечения (изгиб) Характеристики сечения нетто Результаты	расчёта						• •
Проверка	Pacy	ётное нера	венство	Значен	ние	Пун	кт ((
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N}{A_{efn}R_{y}}$	$\frac{M_x}{V_c} + \frac{M_x}{W_x R_y \gamma_c}$	≤1	0,640	< 1 ¥	7.7.	.4
Расчёт на поперечную силу		Q/Q _w ≤	1	0,084	< 1 🗸	7.7.	.6
Расчёт на прочность отдельной ветви при скатии с изгибом	$\frac{N_1}{A_1 R_y \gamma_c} +$	$\frac{M_{1x0}}{W_{1x0ef}R_y\gamma_c} +$	$e_1 \cdot N_1$ $W_{1y0ef}R_y\gamma_c$	≤1 0,737	< 1 🗸	1	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_x A_{ef} R_y \gamma_i}$	$+ k_{xx} \frac{M_{xx}}{\chi_{LT} W_{xx}}$	$\frac{\alpha}{fR_y\gamma_c} \le 1$	0,746	< 1 ¥	7.7.	. 10. 3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100)	$\frac{N}{\varphi_y A_{ef} R_y \gamma}$	$\frac{k_{yx}}{\chi_{LT}W_{xx}}$	$\frac{x}{\sqrt{R_y \gamma_c}} \le 1$	0,740	< 1 ¥	7.7.	. 10. 3
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\left(\frac{N}{\varphi A, R, \gamma}\right)$	$\left(\frac{e_N N}{r_{12} W_{12}}\right)^{0,3} + \left(\frac{e_N N}{r_{12} W_{12}}\right)^{0,3}$	$\left(\frac{M_{y(x)}}{M_{y(x)}}\right)^{0.5}$	≤1 0,840	< 1 ¥	7.7.	. 10.4
Расчёт на прочность отдельной ветви при сжатии с изгибом Параметр	Обозн.	Значение	Ед.изм.	Пункт (фо	рмула	а) СП	260
Расчётное осевое усилие сжатия	N	22,000	кН		,		
Изгибающий момент в ветви относительно её оси	M _{1x0}	1760,000	кН.см				
Расстояние от центра тяжести сечения из спаренных профилей до центра тяжести эффективн	e1	0,895	СМ				
Расчётная площадь сечения ветви	A ₁	7,938	см ²				
Расчётный момент сопротивления сечения ветви	W _{1x0ef}	85,022	см ³				
Расчётный момент сопротивления сечения ветви	W _{1y0ef}	17,768	CM ³				
Расчётное сопротивление стали	Ry	333	H/mm ²				
Коэффициент условий работы	Yc	1					
		Excel	3	Закрыть	C	правн	ka

				— L	· ·
арактеристики эффективного сечения (изгиб) Характеристики сечения нетто Результа	ты расчёта				4
Троверка	Pac	чётное нера	авенство	Значение	Пункт
Расчёт на прочность сечения нетто при ожатии с изгибом	$\frac{N}{A_{efn}R_{y}}$	$\frac{M_x}{\gamma_c} + \frac{M_x}{W_x R_y \gamma_c}$	≤ 1	0,640 < 1	✓ 7.7.4
Расчёт на поперечную силу		Q/Q _w ≤	1	0,084 < 1	✓ 7.7.6
асчёт на прочность отдельной ветви при сжатии с изгибом	$\frac{N_1}{A \cdot B \cdot y}$ +	$\frac{M_{1x0}}{W_{1x0}R_{1x}}$ +	$e_1 \cdot N_1$ $W_1 + e_1 R_1 = R_1 N_1$	·≤1 0,737 < 1	~
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99	$\frac{N}{N}$	$-+k_{xx}$ $\frac{M}{M}$	x x x x x x x x x x x x x x x x x x x	0,746 < 1	✓ 7.7.1
Совместное действие осевого сжатия и изгиба. Пооверка по формуле взаимодействия (7.10	$(0) \frac{\varphi_x R_{ef} R_y}{N}$	$-+k_{yy}\frac{M}{M}$	$\frac{h_y \gamma_c}{x} < 1$	0.740 < 1	✓ 7.7.1
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.10	(1) $\left(\frac{N}{n^{A-R_{y}}}\right)$	$\left(\frac{e_N N}{2}\right)^{0.8} + \left(\frac{e_N N}{2}\right)^{0.8}$	$\frac{e_f R_y \gamma_c}{\frac{H_y \gamma_c}{R_y \gamma_c}} = \frac{1}{2} \left(\frac{M_y \gamma_c}{R_y \gamma_c} \right)^{0}$	≤1 0,840 < 1	✓ 7.7.1
<	(pref Ry)	c/ V(17 Wy)	(x) of ^R y ^y c [/]		
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимоде	йствия (7.	99)			
Тараметр	Обозн.	Значение	Ед.изм.	Пункт (формул	та) СП 26
Расчётное осевое усилие сжатия	Ν	40,000	кН		
1згибающий момент	М	3200,000	кн.см		
Эксцентриситет	e _N	0,000	CM	7.7.2.3	
Ілощадь эффективного сечения	A _{ef}	15,877	CM ²		
Расчётный момент сопротивления сечения	Wef	170,052	CM ³		
еометрическая длина элемента	L	8,000	м		
асчётная длина относительно оси x - x	l _{efx}	8,000	м		
асчётная длина относительно оси у - у	l _{efy}	2,000	м		
асчётная длина при крутильной форме потери устойчивости	L _{orT}	4,000	м		
асчётная длина при потере устойчивости плоской формы изгиба	L _{orLT}	2,000	м		
Приведённая гибкость относительно оси x - x	$\overline{\lambda_x}$	0,878		7.7.8.1	
Приведённая гибкость относительно оси у - у	$\bar{\lambda_{y}}$	0,519		7.7.8.1	
Сривая потери устойчивости относительно оси х - х		a		7.7.8.1	
(ривая потери устойчивости относительно оси у - у		b		7.7.8.1	
Коэффициент устойчивости при центральном сжатии	φ _x	0,755		7.7.8.1	
Коэффициент устойчивости при центральном сжатии	Φν	0,877		7.7.8.1	
(ритическая сила для крутильной формы потери устойчивости	N _{crT}	906,661	кН	7.7.8.4	
Сритический момент потери устойчивости плоской формы изгиба в упругой стадии	Mcr	31235,691	кном	Приложение Г	
/словная гибкость при потере устойчивости плоской формы изгиба	λ _{LT}	0,426		7.7.9.2	
Сривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b		7.7.9.2	
Тонижающий коэффициент при потере устойчивости плоской формы изгиба	XLT	0,912		7.7.9.2	
Иетод определения коэффициентов взаимодействия		1			
Соэффициент взаимодействия	k	1,043			
асчётное сопротивление стали	R	333	H/mm ²		
· · · · · · · · · · · · · · · · · · ·		1			

арактеристики эффективного сечения (изгиб) Характеристики сечения нетто Результат	ы расчёта	1	
Троверка	Pac	чётное неравенство	Значение Пун
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N}{A_{efn}R_y}$	$\frac{M_x}{\gamma_c} + \frac{M_x}{W_x R_y \gamma_c} \le 1$	0,640 < 1 ✓ 7.7.4
Расчёт на поперечную силу		$Q/Q_{w} \leq 1$	0,084 < 1 ✓ 7.7.
Расчёт на прочность отдельной ветви при сжатии с изгибом	$\frac{N_1}{A_1 R_y \gamma_c}$ +	$\frac{M_{ix0}}{W_{ix0ef}R_y\gamma_c} + \frac{e_i \cdot N_i}{W_{iy0ef}R_y\gamma_c}$	≤1 0,737 < 1 ✓
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_x A_{ef} R_{yl}}$	$\frac{M_x}{\chi_c} + k_{xx} \frac{M_x}{\chi_{LT} W_{xef} R_y \gamma_c} \le 1$	0,746 < 1 ✓ 7.7.
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100) $\frac{N}{\varphi_y A_{ef} R_y}$	$\frac{M_x}{\gamma_c} + k_{yx} \frac{M_x}{\chi_{LT} W_{xef} R_y \gamma_c} \le 1$	0,740 < 1 ✔ 7.7.
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101	$\left(\frac{N}{\varphi A_{ss}R_{s}\gamma}\right)$	$\frac{1}{\gamma_{e}} \int_{-\infty}^{0.8} + \left(\frac{e_N N + M_{y(x)}}{\gamma_{er} W_{w(x)} + e_N R_{w} \gamma_{e}} \right)^{0.2}$	s ≤1 0,840 < 1 ✓ 7.7.
<			
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодей	ствия (7.	.100)	
Тараметр	Обозн.	Значение Ед.изм.	Пункт (формула) СП 2
Расчётное осевое усилие сжатия	N	40,000 ĸH	
Изгибающий момент	м	3200,000 кН-см	
Эксцентриситет	e _N	0,000 cm	7.7.2.3
Ллощадь эффективного сечения	A _{ef}	15,877 cm ²	
Расчётный момент сопротивления сечения	W _{ef}	170,052 cm ³	
еометрическая длина элемента	L	8,000 M	
Расчётная длина относительно оси х - х	l _{efx}	8,000 M	
Расчётная длина относительно оси у - у	l _{efv}	2,000 M	
Расчётная длина при крутильной форме потери устойчивости	L _{aT}	4,000 M	
Расчётная длина при потере устойчивости плоской формы изгиба	LorLT	2,000 M	
Приведённая гибкость относительно оси x - x	λx	0,878	7.7.8.1
Приведённая гибкость относительно оси у - у	λv	0,519	7.7.8.1
Кривая потери устойчивости относительно оси x - x		а	7.7.8.1
Кривая потери устойчивости относительно оси у - у		b	7.7.8.1
Коэффициент устойчивости при центральном сжатии	φ _x	0,755	7.7.8.1
Коэффициент устойчивости при центральном сжатии	φ	0,877	7.7.8.1
Критическая сила для крутильной формы потери устойчивости	N _{crT}	906,661 кH	7.7.8.4
Критический момент потери устойчивости плоской формы изгиба в упругой стадии	Mer	31235,691 кН-см	Приложение Г
/словная гибкость при потере устойчивости плоской формы изгиба	λ _{LT}	0,426	7.7.9.2
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		ь	7.7.9.2
Тонижающий коэффициент при потере устойчивости плоской формы изгиба	X _{LT}	0,912	7.7.9.2
Метод определения коэффициентов взаимодействия		1	
Коэффициент взаимодействия	k	1,056	
Расчётное сопротивление стали	Rv	333 Н/мм ²	
e	v	1	

Характеристики эффективного сечения (изгиб) Характеристики сечения нетто Результаты Проверка Расчёт на прочность сечения нетто при сжатии с изгибом Расчёт на поперечную силу Расчёт на прочность отдельной ветви при сжатии с изгибом Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101)	расчёта Расч $\frac{N}{A_{efn}R_{y}\gamma}$ $\frac{N_{i}}{A_{i}R_{y}\gamma_{c}}$ $\frac{N_{i}}{\phi_{y}A_{ef}R_{y}\gamma_{c}}$ $\frac{N}{\phi_{y}A_{ef}R_{y}\gamma_{c}}$ ($\frac{N}{\phi_{A_{ef}}R_{y}\gamma_{c}}$ ТВИЯ (7.1 ЮЗН. ЭН	$\frac{\ddot{e}}{c} + \frac{M_{c}}{W_{x}R}$ Q / Q_{1} $\frac{M_{1x0}}{W_{1x00}R_{y}Y}$ $c + k_{xx} \frac{\chi_{1x7}}{\chi_{1x7}}$ $c + k_{yx} \frac{\chi_{1x7}}{\chi_{1x7}}$ $c + k_{yx} \frac{\chi_{1x7}}{\chi_{1x7}}$	epabenci $\frac{x}{y \gamma_c} \le 1$ $\frac{y}{c} + \frac{e_1 \cdot N}{W_{1y0ef} I}$ $\frac{M_x}{W_{xef} R_y \gamma_c}$ $\frac{M_x}{W_{xef} R_y \gamma_c}$	$\frac{k_1}{R_y \gamma_c} \le 1$ ≤ 1 ≤ 1 $= \int_{-1}^{0.8} \le 1$	Значение 0,640 < 1 0,084 < 1 0,737 < 1 0,746 < 1 0,740 < 1 0,840 < 1	 □ Π ↓ 7. 	ч ункт (.7.4 .7.6 7.10.3 7.10.3
Проверка Расчёт на прочность сечения нетто при сжатии с изгибом Расчёт на поперечную силу Расчёт на поперечную силу Расчёт на прочность отдельной ветви при сжатии с изгибом Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	Расч $\frac{N}{A_{efn}R_{y}\gamma}$ $\frac{N_{i}}{A_{i}R_{y}\gamma_{e}}$ $\frac{N}{\varphi_{x}A_{ef}R_{y}\gamma_{e}}$ $\frac{N}{\varphi_{y}A_{ef}R_{y}\gamma_{e}}$ $\left(\frac{N}{\varphi A_{ef}R_{y}\gamma_{e}}\right)$ ТВИЯ (7.1 ЮОЗН. ЭН	$\frac{d}{dc} = \frac{d}{dc} + \frac{M}{W_x R}$ $\frac{Q}{W_x R} + \frac{M}{W_x R}$ $\frac{Q}{W_{1x0} e_f R_y \gamma}$ $\frac{M}{w_{1x0} e_f R_y \gamma}$ $\frac{W_{1x0} e_f R_y \gamma}{w_{1x0} e_f R_y \gamma}$ $\frac{W_{1x0} e_f R_y \gamma}{w_{1x0} e_f R_y \gamma}$	epabenci $\frac{x}{y \gamma_c} \le 1$ $\frac{w}{c} \le 1$ $\frac{M_x}{w_{xof} R_y \gamma_c}$ $\frac{M_x}{w_{xof} R_y \gamma_c}$ $\frac{M_x}{w_{xof} R_y \gamma_c}$	$\frac{k_{1}}{R_{y}\gamma_{c}} \leq 1$ ≤ 1 ≤ 1 $\int_{-}^{0.8} \leq 1$	Значение 0,640 < 1 0,084 < 1 0,737 < 1 0,746 < 1 0,740 < 1 0,840 < 1	Implementation ✓	ункт (.7.4 .7.6 7.10.3 7.10.3 7.10.4
Расчёт на прочность сечения нетто при сжатии с изгибом Расчёт на поперечную силу Расчёт на прочность отдельной ветви при скатии с изгибом Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\frac{N}{A_{efn}R_{y}\gamma}$ $\frac{N_{i}}{A_{i}R_{y}\gamma_{e}}$ $\frac{N}{\phi_{x}A_{ef}R_{y}\gamma_{e}}$ $\frac{N}{\phi_{y}A_{ef}R_{y}\gamma_{e}}$ $\frac{N}{\phi_{x}A_{ef}R_{y}\gamma_{e}}$ $\frac{N}{\phi_{x}A_{ef}R_{y}\gamma_{e}}$ TBHR (7.1 SHH (7.1 SHH (7.1 SH)	$\frac{M_{ix}}{V_{c}} + \frac{M_{ix}}{W_{x}R}$ $\frac{Q}{V_{ix0}} / Q_{i}$ $\frac{M_{ix0}}{W_{ix0ef}R_{y}Y}$ $\frac{K_{ix}}{V_{ix1}}$ $\frac{K_{ix}}{V_{ix1}}$ $\frac{Q}{V_{ix0ef}R_{y}Y}$ $\frac{M_{ix0}}{V_{ix1}}$	$\frac{x}{y \gamma_c} \le 1$ $w \le 1$ $\frac{1}{c} + \frac{e_1 \cdot N}{W_{1y} o_{ef} I}$ $\frac{M_x}{W_{xef} R_y \gamma_c}$ $\frac{M_x}{W_{xef} R_y \gamma_c}$ $\frac{M_x}{W_{y(x)ef} R_y \gamma_c}$	$\frac{k_1}{R_y \gamma_c} \le 1$ ≤ 1 ≤ 1 $-\int_{0.3}^{0.3} \le 1$	0,640 < 1 0,084 < 1 0,737 < 1 0,746 < 1 0,740 < 1 0,840 < 1	 ✓ 7. 	.7.4 .7.6 7.10.3 7.10.3 7.10.4
Расчёт на поперечную силу Расчёт на прочность отдельной ветви при скатии с изгибом Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\frac{N_1}{A_1 R_y \gamma_c} + \frac{N_1}{P_x}$ $\frac{N}{\varphi_x A_{ef} R_y \gamma_c}$ $\frac{N}{\varphi_y A_{ef} R_y \gamma_c}$ $\frac{N}{\varphi A_{ef} R_y \gamma_c}$ TBH9 (7.1 Signal 3H	$Q / Q,$ $\frac{M_{1x0}}{M_{1x0ef}R_y \gamma}$ $\frac{K_{1x}}{k_{1x}} + k_{xx} \frac{1}{\chi_{1x}}$ $\frac{K_{1x}}{k_{1x}} + k_{yx} \frac{1}{\chi_{1x}}$ $\frac{K_{1x}}{k_{1x}} + k_{yx} \frac{1}{\chi_{1x}}$		$\frac{k_1}{k_y \gamma_c} \le 1$ ≤ 1 ≤ 1 $\frac{1}{c} = 0.8 \le 1$	0,084 < 1 0,737 < 1 0,746 < 1 0,740 < 1 0,840 < 1	 ✓ 7. ✓ 7. ✓ 7. ✓ 7. ✓ 7. 	7.10. 7.10.
Расчёт на прочность отдельной ветви при скатии с изгибом Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (7.101)	$ \frac{N_{1}}{A_{1}R_{y}\gamma_{c}} + \frac{N}{A_{1}R_{y}\gamma_{c}} + \frac{N}{\varphi_{x}A_{cf}R_{y}\gamma_{c}} + \frac{N}{\varphi_{y}A_{cf}R_{y}\gamma_{c}} + \frac{N}{\varphi_{x}A_{cf}R_{y}\gamma_{c}} + \frac{N}{\varphi_{x}A$	$\frac{M_{1x0}}{W_{1x0ef}R_{y}\gamma}$ $+ k_{xx}\frac{\chi_{1r}}{\chi_{1r}}$ $+ k_{yx}\frac{\chi_{1r}}{\chi_{1r}}$ $+ k_{yx}\frac{\chi_{1r}}{\chi_{1r}}$	$\frac{e_1 \cdot N}{V_c} + \frac{e_1 \cdot N}{W_{1y0af} I}$ $\frac{M_x}{W_{xaf} R_y \gamma_c} = \frac{M_x}{W_{xaf} R_y \gamma_c}$ $\frac{M_x}{W_{xaf} R_y \gamma_c} = \frac{M_y}{W_{yaf} R_y \gamma_c}$	$\frac{l_1}{R_y \gamma_c} \le 1$ ≤ 1 ≤ 1 $\frac{1}{\sqrt{3}} = 1$	0,737 < 1 0,746 < 1 0,740 < 1 0,840 < 1	 ✓ 	7.10. 7.10. 7.10.
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101)	$\frac{N}{\varphi_x A_{ef} R_y \gamma_c}$ $\frac{N}{\varphi_y A_{ef} R_y \gamma_c}$ $\left(\frac{N}{\varphi A_{ef} R_y \gamma_c}\right)$ ТВИЯ (7.1	$\frac{1}{c} + k_{xx} \frac{1}{\chi_{LT}}$ $\frac{1}{c} + k_{yx} \frac{1}{\chi_{LT}}$ $\int_{0.8}^{0.8} + \left(\frac{e}{\chi_{LT}}\right)$	$\frac{M_x}{W_{xef}R_y\gamma_c}$ $\frac{M_x}{W_{xef}R_y\gamma_c}$ $\frac{M_x}{W_{xef}R_y\gamma_c}$ $\frac{M_y(x)}{W_y(x)ef}R_y\gamma_c$	≤ 1 ≤ 1 $\frac{1}{c}^{0,8} \leq 1$	0,746 < 1 0,740 < 1 0,840 < 1	. ✓ 7. . ✓ 7. . ✓ 7.	.7.10. 7.10. 7.10.
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст Параметр 06	$\frac{N}{\varphi_y A_{ef} R_y \gamma_c}$ $\left(\frac{N}{\varphi A_{ef} R_y \gamma_c}\right)$ твия (7.1	$\frac{1}{c} + k_{yx} \frac{1}{\chi_{LT}}$ $\int_{0}^{0.5} + \left(\frac{e_j}{\chi_{LT}}\right)$	$\frac{M_x}{W_{xaf}R_y\gamma_c}$ $\frac{W_{xaf}R_y\gamma_c}{W_{y(x)}}$ $\frac{W_y(x)}{W_y(x)af}R_y\gamma_c$	≤ 1 $\frac{1}{c} \int_{-\infty}^{0.8} \leq 1$	0,740 < 1 0,840 < 1	✓ 7. ✓ 7.	7.10. 7.10.
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.101) Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст Параметр Об	(<u>N</u> (_{<i>φ</i>A_{ef} R_yγ_c) твия (7.1) бозн. Зн}	$\int_{101}^{0.3} + \left(\frac{e_1}{\chi_{LT}}\right)$	$W_{y(x)af}R_{y}\gamma_{0}$	$\frac{1}{c} \int_{-}^{0,8} \leq 1$	0,840 < 1	√ 7.	.7.10.4 >
< Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст Параметр 06 Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст 	твия (7.1 іозн. Зн	101)					>
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейст Параметр 06	твия (7.1 іозн. Зн	LO1)					_
Параметр Об	іозн. Зн						^
-		ачение	Ед.изм.	Пункт	(формула)) CT 2	60
Эксцентриситет е _N		0,000	CM	7.7.2.3	3		
Площадь эффективного сечения А _е	e.	15,877	cm ²				
Расчётный момент сопротивления сечения W		170,052	cm ³				
Геометрическая длина элемента L	y (A)=1	8,000	м				
Расчётная длина относительно оси х - х		8,000	м				
Расчётная длина относительно оси у - у		2,000	м				
Расчётная длина при крутильной форме потери устойчивости L	у т	4,000	м				
Расчётная длина при потере устойчивости плоской формы изгиба L _{-и}	.т	2,000	м				
Приведённая гибкость относительно оси х - х $\overline{\lambda_v}$		0,878		7.7.8.1	L		
Приведённая гибкость относительно оси у - у $\overline{\lambda_{i,j}}$		0,519		7.7.8.1	L		
у Кривая потери устойчивости относительно оси х - х		a		7.7.8.1	L		
Кривая потери устойчивости относительно оси у - у		b		7.7.8.1	L		
Коэффициент устойчивости при центральном сжатии ф.		0,755		7.7.8.1	L		
Коэффициент устойчивости при центральном сжатии ф.		0,877		7.7.8.1	L		
У У Критическая сила при крутильной форме потери устойчивости N_	, 	906,661	кН	7.7.8.4	ł		
Критическая сила при изгибно-крутильной форме потери устойчивости N_	лта — 9	906,661	кН	7.7.8.5	5		1
Условная гибкость при крутильной/изгибно-крутильной форме потери устойчивости $\lambda_{ au}$		0,764		7.7.8.3	3		
Кривая потери устойчивости при крутильной/изгибно-крутильной форме		a		7.7.8.3	3		
Коэффициент устойчивости при крутильной/изгибно-крутильной форме потери устойчиво m-		0,820		7.7.8.3	3		
Расчётный понижающий коэффициент оо		0,755					
Упругий критический момент потери устойчивости плоской формы изгиба М	312	235,691	кна	Прилох	кение Г		
ча Условная гибкость при потере устойчивости плоской формы изгиба Х.		0,426		7.7.9.2	2		
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b		7.7.9.2	2		
Понижающий коэффициент при потере устойчивости плоской формы изгиба		0,912		7.7.9.2	2		
Расчётное сопротивление стали Яу	,	333	Н/мм ²				~

Рисунок 2.3.19 – Результаты расчёта. Результаты проверок

	Delta Engineering Software	CFSteel 4.3		страница 1
	http://www.CFSteel.ru	User		
0	mailto:deltaing@mail.ru	СП260		28.04.2022
Колонна	фахверка			
Длина эл	емента	L	8.000	м
Расчётно	е осевое усилие сжатия	N	40,000	кН
Расчётнь	ій изгибающий момент (расчёт на устойчивость)	M	3200,000	кН∙см
Расчётнь	ій изгибающий момент (расчёт на прочность)	м	3200,000	кН∙см
Расчётна	я длина относительно оси х - х	let.	8.000	м
Расчётна	я длина относительно оси у - у	L.	2 000	M
Расцётна	а длина при крутильной форме потери устойцивости	'ery	4,000	
D		Lατ	4,000	M
Расчетна	я длина при потере устоичивости плоскои формы изгиоа	L _{cr,LT}	2,000	м
Коэффиц	иент закрепления концов от поворота вокруг оси	k.	1	
элемента	3		-	
Коэффиц	иент стеснения депланации концов элемента	k _w	1	
Коэффиц	иент	Ci	1,140	
Коэффиц	иент	с,	0.000	
		1	-,	
Уровень	приложения поперечной нагрузки	ĴĊ		
Вид эпки	ры моментов	M 1	ΨMt	
		-1≤Ψ≤1		
Шаг объе	единения ветвей	l ₁	0,500	м
Коэффиц	иент условий работы (расчёт на устойчивость)	Ye	1	
Коэффиц	иент условий работы (расчёт на прочность)	Ye.	1	
Courses				
сечение				
C 250x80	x40x2,5			
ECCS L				
		h	250,0	MM
te		t	2,5	MM
		b	80,0	MM
		с	40,0	MM
		r	5,0	MM
h				
	t			
п				
	c d			
			0.00	
	s Dr	Coat	0,00	MM
		S	0,0	MM
Ослабле	ние сечения отверстиями			
	Стенка			
Диаметр	отверстия	d	18,0	мм
		a,	83.3	мм
		-		
		a ₂	83,3	MM
Сталь				
Группа ст	андартов		EN	
Стандарт		1	EN 10147	
Сталь		9	\$350GD	
Нормати	вное сопротивление стали по пределу текучести	R _{vn}	350	H/mm²
Нормати	вное сопртивление стали по пределу прочности	R.	420	H/mm²
Портаги	пос сопримение стали по пределу прочности	- un	-120	2
Модуль	пругости	E	206000	н/мм-
коэффиц	иент пуассона	v	0,3	
коэффиц	иент надежности по материалу	Υm	1,05	

Рисунок 2.3.20 – Результаты расчёта в Excel. Общие данные

Delta Engineering Software	CFSteel 4.3	страница 2
mailto:deltaing@mail.ru	СП260	28.04.2022
Колонна фахверка		
C 250x80x40x2,5 ECCS L		
Характеристики полного сечения		
ΛΥ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι		
Наименование характеристики	Обозн. Зна	чение Ед.изм.
Площадь поперечного сечения	A	23,463 см ²
Момент инерции относительно оси х - х	I _x 210	62,083 см ⁴
Момент сопротивления сечения относительно оси х - х	W _x 1	72,967 см ³
Радиус инерции относительно оси х - х	i _x	9,599 см
Момент инерции относительно оси у - у	I _y 3	86,333 см ⁴
Момент сопротивления сечения относительно оси у - у	Wy	48,292 см ³
Радиус инерции относительно оси у - у	iy .	4,058 см
Момент инерции при свободном кручении	I _t 0,4	87182 см ⁴

Рисунок 2.3.21 – Результаты расчёта в Excel. Характеристики полного сечения

l_w

74457,671 см⁶

18,94 кг/м

Секториальный момент инерции

Вес одного погонного метра профиля

Элементы

	Delta Engineering Software	CFSteel 4.3	страница З
	http://www.CFSteel.ru	User	
0	mailto:deltaing@mail.ru	СП260	28.04.2022
Колонна	фахверка		

C 250x80x40x2,5 ECCS L

Характеристики эффективного сечения

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A _{er}	15,877 см ²
Момент инерции относительно оси х - х	l _{x ef}	1963,880 см ⁴
Момент сопротивления сечения для верхнего пояса	W _{xpef}	157,110 см ³
Момент сопротивления сечения для нижнего пояса	W _{xH ef}	157,110 см ³
Радиус инерции относительно оси х - х	İ _{x ef}	11,122 см
Момент инерции относительно оси у - у	l _{y ef}	353,365 см ⁴
Момент сопротивления сечения относительно оси у - у	Wyer	44,171 см ³
Радиус инерции относительно оси у - у	İyer	4,718 см

Рисунок 2.3.22 – Результаты расчёта в Excel. *Характеристики эффективного сечения (сжатие)*

U mai	ilto:deltaing@mail.ru	CП260	28.04.2022
http	p://www.CFSteel.ru	User	
De	elta Engineering Software	CFSteel 4.3	страница 4

Колонна фахверка C 250x80x40x2,5 ECCS L

Характеристики эффективного сечения (изгиб)

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A _{ef}	23,294 см ²
Момент инерции относительно оси х - х	I _{xef}	2139,727 см ⁴
Момент сопротивления сечения для верхнего пояса	W _{xp ef}	170,052 см ³
Момент сопротивления сечения для нижнего пояса	W _{xH ef}	172,320 см ³
Радиус инерции относительно оси х - х	İ _{x ef}	9,584 см
Момент инерции относительно оси у - у	l _{y ef}	378,060 см ⁴
Момент сопротивления сечения относительно оси у - у	Wyer	47,258 см ³
Радиус инерции относительно оси у - у	i _{yer}	4,029 см

Рисунок 2.3.23 – Результаты расчёта в Excel. Характеристики эффективного сечения (изгиб)

1	Delta Engineering Software http://www.CFSteel.ru	CFSteel 4.3 User	страница 5
ы.	mailto:deltaing@mail.ru	СП260	28.04.2022

Колонна фахверка

C 250x80x40x2,5 ECCS L

Характеристики сечения нетто

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	Α	21,663 см ²
Момент инерции относительно оси х - х	l _x	2130,372 см ⁴
Момент сопротивления сечения для верхнего волокна	W _{x0}	170,435 см ³
Момент сопротивления сечения для нижнего волокна	W _{XH}	170,424 см ³
Радиус инерции относительно оси х - х	i _x	9,917 см
Момент инерции относительно оси у - у	l _y	386,296 см ⁴
Момент сопротивления сечения относительно оси у - у	Wy	48,287 см ³
Радиус инерции относительно оси у - у	iy	4,223 см

Рисунок 2.3.24 – Результаты расчёта в Ехсеl. Характеристики сечения нетто

C	Delta Engineering Softw	vare	CFSteel 4.3		страница 6
	http://www.CFSteel.ru		User		
	mailto:deltaing@mail.ru		СП260		28.04.2022
Колонна	а фахверка				
	Проверка	Расчётное неравенство	Значение		Пункт (формула) СП 260
Расчёт н нетто пр	а прочность сечения и сжатии с изгибом	$\frac{N}{A_{ofe}R_{y}\gamma_{c}} + \frac{M_{x}}{W_{x}R_{y}\gamma_{c}} \leq 1$	0,640 < 1	~	7.7.4
Расчёт н	а поперечную силу	Q./Q _w ≤1	0,084 < 1	✓	7.7.6
Расчёт н ветви пр	а прочность отдельной и сжатии с изгибом	$\frac{N_1}{A_1R_y\gamma_{\varepsilon}} + \frac{M_{1x0}}{W_{1x0xy}R_y\gamma_{\varepsilon}} + \frac{\mathbf{e}_1\cdot N_1}{W_{1y0xy}R_y\gamma_{\varepsilon}} \leq 1$	0,737 < 1	~	
Совмест сжатия и формуле	ное действие осевого 1 изгиба. Проверка по е взаимодействия (7.99)	$\frac{N}{\varphi_{k}A_{47}R_{2}\gamma_{c}} + k_{xx}\frac{M_{c}}{\chi_{17}W_{k47}R_{2}\gamma_{c}} \leq 1$	0,746 < 1	~	7.7.10.3
Совмест сжатия и формуля (7.100)	ное действие осевого 1 изгиба. Проверка по е взаимодействия	$\frac{N}{\varphi_{Y}A_{sf}R_{Y}y_{c}} + k_{Yx}\frac{M_{x}}{\chi_{LT}\mathcal{W}_{xsf}R_{Y}y_{c}} \leq 1$	0,740 < 1	~	7.7.10.3
Совмест сжатия и формуля (7.101)	ное действие осевого 1 изгиба. Проверка по е взаимодействия	$\left(\frac{N}{pA_{el} \mathcal{S}_y \mathcal{Y}_c}\right)^{\ell, 2} + \left(\frac{a_{j_i} N + M_{\mathcal{Y}(\mathcal{Y})}}{\chi_{i_i T} W_{\mathcal{Y}(\mathcal{L}) e f} R_{i_i} \mathcal{Y}_c}\right)^{2, 2} \leq 1$	0,840 < 1	~	7.7.10.4

Параметр	Обозн.	Значение Ед.изм	. Пункт (формула) СП 260	
Расчётное осевое усилие сжатия	Ν	40,000 ĸH		
Расчётный изгибающий момент	M _x	3200,000 кН-см		
Площадь эффективного сечения Расчётный момент сопротивления сечения	A _{er}	15,877 см ²		
	асчётный момент опротивления сечения	асчётный момент W _x	W _x	170,052 см ³
Расчётное сопротивление стали	R _y	333 H/mm²		
Коэффициент условий работы	γ _c	1		
Расчёт на поперечную силу				
Параметр	Обозн.	Значение Ед.изм	. Пункт (формула) СП 260	

Рисунок 2.3.25,а – Результаты расчёта в Excel. *Результаты проверок (начало)*

Расчётная поперечная сила Расчётная высота стенки	Q	12,000 KH	776
Расчётная толщина Условная гибкость стенки	t T	2,5 MM	776
Расчётное сопротивление стали сдвигу	Rs	1,578 116 Н/мм²	7.7.6
Расчётная несущая способность сечения от действия поперечной силы	Q,,	143,697 кН	(7.7.9)

Расчёт на прочность отдельной ветви при сжатии с изгибом

Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) СП 260
Расчётное осевое усилие сжатия	Ni	22,000 кН	
Изгибающий момент в ветви относительно её оси Расстояние от центра тяжести	Mixo	1760,000 кН-см	
сечения из спаренных профилей до центра тяжести эффективного сечения отдельной ветви	ei	0,895 см	
Расчётная площадь сечения ветви	Ai	7,938 cm²	
Расчётный момент сопротивления сечения ветви	W _{ix0ef}	85,022 cm ³	
Расчётный момент			
сопротивления сечения ветви	Wiyoer	17,768 cm ³	
Расчётное сопротивление стали	Ry	333 H/mm²	
Коэффициент условий работы	γc	1	

Параметр	Обозн.	Значение Ед.изм	. Пункт
			(формула) СП 260
Расчётное осевое усилие сжатия	N	40,000 ĸH	
Изгибающий момент	м	3200,000 кН-см	
Эксцентриситет	e _N	0,000 см	7.7.2.3
Площадь эффективного сечения	A _{er}	15,877 _{см} ²	
Расчётный момент сопротивления сечения	W _{ef}	170,052 см ³	

Рисунок 2.3.25,6 – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Геометрическая длина	L	8,000 M	
Расчётная длина относительно	les.	8.000 M	
оси х - х	-EIX	-,	
Расчётная длина относительно	let.	2,000 M	
оси у - у		,	
Расчётная длина при			
крутильной форме потери	Lot	4,000 M	
устоичивости			
Расчетная длина при потере		0.000	
устоичивости плоскои формы	Lorit	2,000 M	
Изгиоа			
Приведенная гиокость	π,	0,878	7.7.8.1
относительно оси х - х			
Приведенная гиокость	π,	0,519	7.7.8.1
относительно оси у - у	'		
кривая потери устоичивости		_	7701
относительно оси х - х		a	7.7.8.1
Кривая потери устойчивости			
относительно оси у - у		b	7.7.8.1
Коэффициент устойчивости при	(1)	0.755	7701
центральном сжатии	Ψχ	0,755	7.7.0.1
Коэффициент устойчивости при	(D	0.877	7781
центральном сжатии	Ψγ	0,077	7.7.0.1
Критическая сила для			
крутильной формы потери	Nort	906,661 ĸH	7.7.8.4
устойчивости			
Критический момент потери			
устойчивости плоской формы	M.,	31235.691 кН·см	Приложение Г
изгиба в упругой стадии			
Условная гибкость при потере			
устойчивости плоской формы	χ_{LT}	0,426	7.7.9.2
Изгиоа			
Кривая потери устоичивости			
(потеря устоичивости плоскои формы изгиба)		b	7.7.9.2
формы изгиоа)			
Понижающий коэффициент			
при потере устойчивости	X _{LT}	0,912	7.7.9.2
плоской формы изгиба			
Метод определения			
коэффициентов		1	
взаимодействия			
Коэффициент взаимодействия	k	1.042	
	N.	1,045	
Расчётное сопротивление стали	P	333 4/2	
	rsy .	333 F/MM	

Рисунок 2.3.25, в – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Yc

Коэффициент условий работы

1

Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100)				
Параметр	Обозн.	Значение Ед.изи	л. Пункт (формула) СП 260	
Расчётное осевое усилие	N	40.000 vH		
сжатия		40,000 MT		
Изгибающий момент	M	3200,000 кН∙см		
Эксцентриситет	e _N	0,000 см	7.7.2.3	
Площадь эффективного сечения	A _{er}	15,877 см ²		
Расчётный момент	w	170.0523		
сопротивления сечения	**ef	170,052 CM		
Геометрическая длина		8 000 **		
элемента	L	0,000 M		
Расчётная длина относительно		× 000 ···		
оси х - х	lefx	6,000 M		
Расчётная длина относительно		2 000		
оси у - у	lety	2,000 M		
Расчётная длина при				
крутильной форме потери	Lot	4,000 M		
устойчивости				
Расчётная длина при потере				
устойчивости плоской формы	Lout	2,000 M		
изгиба				
Приведённая гибкость	-	0.070	7701	
относительно оси х - х	۸ _x	0,878	/./.8.1	
Приведённая гибкость	-	0.540	7704	
относительно оси у - у	^γ	0,519	1.1.8.1	
Кривая потери устойчивости				
относительно оси х - х		а	7.7.8.1	
Кривая потери устойчивости				
относительно оси у - у		b	7.7.8.1	
Коэффициент устойчивости при	II.	0.755	7701	
центральном сжатии	Ψx	0,755	1.1.8.1	
Коэффициент устойчивости при		0.077	7701	
центральном сжатии	Φγ	0,877	1.1.8.1	
Критическая сила для				
крутильной формы потери	Nort	906,661 ĸH	7.7.8.4	
устойчивости				
Критический момент потери				
устойчивости плоской формы				
изгиба в упругой стадии	M _{cr}	31235,691 кН-см	Приложение Г	
Условная гибкость при потере				
устойчивости плоской формы	Τ _{LT}	0,426	7.7.9.2	
изгиба				

Рисунок 2.3.25, г – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2
Понижающий коэффициент	v	0.012	7702
плоской формы изгиба	ALT	0,912	1.1.5.2
Метод определения			
коэффициентов		1	
взаимодействия			
Коэффициент взаимодействия	k	1,056	
Расчётное сопротивление стали	Ry	333 H/мм²	
Коэффициент условий работы	V.	1	

Параметр	Обозн.	Значение Ед.изм	л. Пункт
			(формула) СП 260
Расчётное осевое усилие сжатия	Ν	40,000 ĸH	
Изгибающий момент	M _{y(x)}	3200,000 кН-см	
Эксцентриситет	e _N	0,000 см	7.7.2.3
Площадь эффективного сечения	A _{er}	15,877 cm²	
Расчётный момент сопротивления сечения	$W_{\gamma[x]er}$	170,052 cm ³	
Геометрическая длина элемента	L	8,000 M	
Расчётная длина относительно оси x - x	l _{efx}	8,000 M	
Расчётная длина относительно оси у - у	Ι _{είγ}	2,000 м	
Расчётная длина при крутильной форме потери устойчивости	L _{στ}	4,000 M	
Расчётная длина при потере устойчивости плоской формы изгиба	L _{alī}	2,000 M	
Приведённая гибкость относительно оси х - х	π _x	0,878	7.7.8.1
Приведённая гибкость относительно оси у - у	⊼γ	0,519	7.7.8.1
Кривая потери устойчивости относительно оси x - x		а	7.7.8.1
Кривая потери устойчивости относительно оси у - у		b	7.7.8.1

Рисунок 2.3.25, д – Результаты расчёта в Excel. *Результаты проверок (продолжение)*

Коэффициент устойчивости при центральном сжатии	φ _x	0,755	7.7.8.1
Коэффициент устойчивости при центральном сжатии	φ _y	0,877	7.7.8.1
Критическая сила при крутильной форме потери устойчивости	N _{ert}	906,661 кН	7.7.8.4
Критическая сила при изгибно- крутильной форме потери	N _{crTF}	906,661 кН	7.7.8.5
Условная гибкость при крутильной/изгибно- крутильной форме потери	$\overline{\lambda}_{T}$	0,764	7.7.8.3
устойчивости Кривая потери устойчивости при крутильной/изгибно- крутильной форме		а	7.7.8.3
Коэффициент устойчивости при крутильной/изгибно- крутильной форме потери устойчивости	Φτ	0,820	7.7.8.3
Расчётный понижающий коэффициент	φ	0,755	
Упругий критический момент потери устойчивости плоской формы изгиба	M _{cr}	31235,691 кН∙см	Приложение Г
Условная гибкость при потере устойчивости плоской формы изгиба	${\bf X}_{LT}$	0,426	7.7.9.2
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b	7.7.9.2
Понижающий коэффициент при потере устойчивости плоской формы изгиба	χιτ	0,912	7.7.9.2
Расчётное сопротивление стали	R _y	333 H/мм²	
Коэффициент условий работы	γc	1	

Рисунок 2.3.25,е – Результаты расчёта в Excel. Результаты проверок (окончание)

Сжатие с изгибом [СП260]	×
Konnuus daveenva	Сечение
Длина элемента L 8 м	<u> </u>
Расчётное осевое усилие скатия N 40 кН К-т условий работы (уст-ть) Ус 1 V	
Расчётный момент (устойчивость) М 3200 кН см К-т условий работы (прочность) Ус 1 🗸	
Расчётный момент (прочность) М 3200 кН см Q 12 кН 🗹 Проверка прочности	
Ввод расчётной длины:	
Расчётная длина относительно оси x - x l _{efx} 8 м К-т приведения длины μ_x 1 \checkmark	
Расчётная длина: плоская форма изгиба L _{ort} 2 м м 0 кН м	
Потеря устойчивости плоской формы изгиба	
Граничные условия	
Коэффициент закрепления концов от поворота вокруг оси элемента k _T 1 v Коэффициент стеснения депланации концов элемента k _w 1 v	
Казффикирита с 114	<u>В</u> ыбрать C 250х80х40х2,5 ECCS L
Коэффициент С ₂ 0 II Шаг объединения ветвей l ₁ 0,5 м	
	Сталь Группа стандартов EN 🗸
Уровень приложения нагрузки	Стандарт EN 10147 ~
Эпюра моментов Эпюра моментов	Сталь S350GD 🗸
C _m M ΨM C _{mLT} Ms ΨMh	R _{yn} 350 H/MM ² R _{un} 420 H/MM ²
Ослабление	Комментарии
	Вышилиять Законить Спорека
	сичнойто закрото справка

Рисунок 2.3.26 – Ввод исходных данных (вычисление коэффициентов взаимодействия k_{ij} по *Memody* 2)

a)					б)
С Эпюра моментов		-		×	🖸 Эпюра моментов — 🗆 🗙
Μ ΨΜ -14 Ψ4 1	ψ 0,75	(-1 ≤ ψ	≤ 1)		$ \begin{array}{c c} M & \psi M \\ \hline \\ & & \\ $
Mh Ms as = Ms / Mh					Мп Ms $a_h = M_h / M_s$ (-1 $\leq a_h \leq 1$) О Распределённая нагрузка O Сосредоточенная нагрузка
Ms Mh ah = Mh / Ms					Mb white an = Mb / Ms
	OK O	тменить	Спра	авка	ОК Отменить Справка

Рисунок 2.3.27 - Ввод данных для вычисления коэффициентов: а) – $C_{m,x}$; б) – $C_{m,LT}$ (Таблица В.5 [1])

Рисунок 2.3.28 – Результаты расчёта. *Общие данные* (вычисление коэффициентов взаимодействия k_{ii} по *Memody 2*)

С Результаты				_	
Характеристики эффективного сечения (изгиб) Характеристики сечения нетто Результат	ы расчёта	1			•
Проверка	Pac	чётное нера	авенство	Значени	ие Пункт
Расчёт на прочность сечения нетто при сжатии с изгибом	N	$+\frac{M_x}{W}$	≤ 1	0,640 <	1 🗸 7.7.4
	A _{efn} Ry	$\gamma_c W_x K_y \gamma_c$: 	0.094 <	1 / 776
Расчет на поперечную силу	N ₁	Q/Q _w =	ε 1 ε ₁ · N ₁	0,004 <	1 • 7.7.0
Расчёт на прочность отдельной ветви при сжатии с изгибом	$A_1 R_y \gamma_c$	W _{ix0ef} R _y γ _c +	W _{1y0ef} R _y Y	-≤1 0,737 <	1 🗸
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.99)	$\frac{N}{\varphi_x A_{ef} R_{y}}$	$\frac{M}{\chi_c} + k_{xx} \frac{M}{\chi_{LT} W_{xc}}$	$\frac{x}{a_f R_y \gamma_c} \le 1$	0,686 <	1 🗸 7.7.10
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.100	$\frac{N}{\varphi_{v}A_{at}R_{v}}$	$\frac{M}{v_c} + k_{yx} \frac{M}{\chi_{1T} W_{y}}$	$\frac{l_x}{R_y \gamma_c} \leq 1$	0,703 <	1 🗸 7.7.10
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (7.10:	1) $\left(\frac{N}{\varphi A_{st}R_{s}}\right)$	$\left(\frac{e_N N}{\gamma_{1T} W_{1T}}\right)^{0.8} + \left(\frac{e_N N}{\gamma_{1T} W_{1T}}\right)^{0.8}$	$\frac{+M_{y(x)}}{W_{x}R_{y}Y_{x}}^{0}$	s ≤1 0,840 <	1 🗸 7.7.10
<		er via)(TIN Y.C.		
Сописатиоа пойстана осопого сигатия и начба. Пословить во форму	craws (7	00)			
совместное деяствие осевого сжатия и изгиоа. Проверка по формуле взаимодеи	обеения (7.	200	En	Dance (+	(max) (CE 20
	0003H.	лачение	ед.изм.	тункт (фор	мулај СП 26
	N	3200,000	KH		
	M	3200,000	KH 'CM	7723	
	e _N	15 877	cm cm ²	7.7.2.3	
	Mef	170.052	cm ³		
Геометлическая ллина элемента	**ef	8,000	M		
Расчётная длина относительно оси х - х	- .	8,000	M		
	'etx	2,000	м		
Расчётная длина при крутильной форме потери устойчивости	'ety	4.000	M		
Расчётная длина при потере устойчивости плоской формы изгиба	Fat	2.000	м		
Приведённая гибкость относительно оси х - х	λ	0.878		7.7.8.1	
лично приведённая гибкость относительно оси у - у	× λ	0,519		7.7.8.1	
Кривая потери устойчивости относительно оси х - х	· ·y	, a		7.7.8.1	
Кривая потери устойчивости относительно оси у - у		Ь		7.7.8.1	
Коэффициент устойчивости при центральном сжатии	φ.,	0,755		7.7.8.1	
Коэффициент устойчивости при центральном сжатии	φ_	0,877		7.7.8.1	
Критическая сила для крутильной формы потери устойчивости	N _{crT}	906,661	кН	7.7.8.4	
Критический момент потери устойчивости плоской формы изгиба в упругой стадии	M _{cr}	31235,691	кним	Приложени	eГ
Условная гибкость при потере устойчивости плоской формы изгиба	λ _{LT}	0,426		7.7.9.2	
Кривая потери устойчивости (потеря устойчивости плоской формы изгиба)		b		7.7.9.2	
Понижающий коэффициент при потере устойчивости плоской формы изгиба	X _{LT}	0,912		7.7.9.2	
Метод определения коэффициентов взаимодействия		2			
Коэффициент взаимодействия	k	0,947			
Расчётное сопротивление стали	Ry	333	H/mm ²		
Коэффициент условий работы	Yc	1			

С Результаты						— C	x c
Характеристики эффективного сечения (изгиб)	Характеристики сечения нетто	Результаты	расчёта				•
Проверка			Pacy	ётное нера	венство	Значение	Пункт (
Расчёт на прочность сечения нетто при сжатии	с изгибом		$\frac{N}{A_{efn}R_y}$	$\frac{M_x}{V_c} + \frac{M_x}{W_x R_y \gamma_c}$	≤1	0,640 < 1	✓ 7.7.4
Расчёт на поперечную силу				Q/Q _w ≤	1	0,084 < 1	✓ 7.7.6
Расчёт на прочность отдельной ветви при сжат	ии с изгибом		$\frac{N_1}{A_1 R_y \gamma_c}$ +	$\frac{M_{1x0}}{W_{1x0ef}R_y\gamma_c} +$	$e_1 \cdot N_1$ $W_{1y0ef}R_y\gamma_c$	≤ 1 0,737 < 1	~
Совместное действие осевого сжатия и изгиба.	Проверка по формуле взаимодейс	твия (7.99)	$\frac{N}{\varphi_x A_{ef} R_y \gamma}$	$+ k_{xx} \frac{M_y}{\chi_{LT} W_{xq}}$	$\frac{c}{f^R_y \gamma_c} \leq 1$	0,686 < 1	✓ 7.7.10.3
Совместное действие осевого сжатия и изгиба.	Проверка по формуле взаимодейс	твия (7.100)	$\frac{N}{\varphi_{y}A_{ef}R_{y}\gamma}$	$\frac{M}{k_{yx}} + k_{yx} \frac{M}{\chi_{LT} W_{xx}}$	$\frac{x}{\sqrt{R_y \gamma_c}} \le 1$	0,703 < 1	✓ 7.7.10.3
Совместное действие осевого сжатия и изгиба.	Проверка по формуле взаимодейс	твия (7 . 101)	$\left(\frac{N}{\varphi A_{\mu\nu}R_{\nu}\gamma_{\nu}}\right)$	$\left \int_{1}^{0.8} + \left(\frac{e_N N + \frac{1}{\chi_{1T} W_{y_1}} \right) \right ^{0.8}$	$\left(\frac{M_{y(x)}}{m_{x}}\right)^{0.3}$	≤1 0,840 < 1	✓ 7.7.10.4
<							>
Совместное действие осевого сжатия и и	згиба. Проверка по формуле в	заимодейс	твия (7.1	100)			
Параметр			Обозн.	Значение	Ед.изм.	Пункт (форму)	na) CII 260
Расчётное осевое усилие сжатия			N	40,000	кН		
Изгибающий момент			м	3200,000	кном		
Эксцентриситет			e _N	0,000	СМ	7.7.2.3	
Площадь эффективного сечения			A _{ef}	15,877	см2		
Расчётный момент сопротивления сечения			Wef	170,052	см ³		
Геометрическая длина элемента			L	8,000	м		
Расчётная длина относительно оси х - х			l _{efx}	8,000	м		
Расчётная длина относительно оси у - у			l _{efy}	2,000	м		
Расчётная длина при крутильной форме потери	устойчивости		L _{er} T	4,000	м		
Расчётная длина при потере устойчивости плос	кой формы изгиба		Lot	2,000	м		
Приведённая гибкость относительно оси х - х			λ	0,878		7.7.8.1	
Приведённая гибкость относительно оси у - у			λ.	0,519		7.7.8.1	
Кривая потери устойчивости относительно оси	x - x		y	a		7.7.8.1	
Кривая потери устойчивости относительно оси	y - y			b		7.7.8.1	
Коэффициент устойчивости при центральном о	катии		Φ.,	0,755		7.7.8.1	
Коэффициент устойчивости при центральном о	катии		Φ.,	0,877		7.7.8.1	
Критическая сила для крутильной формы потес	ои устойчивости		Net	906,661	кН	7.7.8.4	
Критический момент потери устойчивости плос	кой формы изгиба в упругой стади	и	Mer	31235,691	кН.см	Приложение Г	
Условная гибкость при потере устойчивости пл	оской формы изгиба		λīτ	0,426		7.7.9.2	
Кривая потери устойчивости (потеря устойчиво	ости плоской формы изгиба)			ь		7.7.9.2	
Понижающий коэффициент при потере устойчи	вости плоской формы изгиба		Хіт	0,912		7.7.9.2	
Метод определения коэффициентов взаимодей	ствия		er ti	2			
Коэффициент взаимодействия			k	0,997			
Расчётное сопротивление стали			R.,	333	H/MM ²		
Коэффициент условий работы			Yc	1			
				Excel	3	Закрыть	Справка

Рисунок 2.3.29 – Результаты расчёта. *Результаты проверок* (вычисление коэффициентов взаимодействия k_{ij} по Memody 2)

2.3.3. Сжатый с изгибом элемент из спаренных С-образных профилей по ЕСЗ

Задание: Выполнить проверку устойчивости сжато-изгибаемого элемента из спаренных С-образных профилей. Исходные данные взяты из Примера L документа Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123 [10].

The example shows a check of an end-wall column. The cross-section consists of two C-sections arranged back-to-back, mutually connected by pairs of bolts located in thirds of the web height. The column is a simply supported beam, loaded by a compressive axial load and three transversal loads acting as intermediate girts connected to the outer flanges. The compressive axial load simulates the reaction from the roof (Figure 2.3.30). The transversal loads simulate either the wind pressure or the wind suction on the end-wall (for simplicity are considered as being the same).

Figure 2.3.30 – System, loading, internal forces and moments

Column height L = 8 m, distance $x_{FI} = 2 m$, $x_{F2} = 4 m$, $x_{F3} = 6 m$, distance of girts g = 2 m, distance of flange bracing f = 4 m. Compressive load $N_{Ed} = 40 kN$, transversal loads $F_d = 8 kN$, max. bending moment $M_{Ed} = 32 kNm$.

Table 2.3.13 - Buckling lengths and factors []	10)		
--	----	---	--	--

Description	Symbol	Unit	Value
Buckling length about the y-y axis	L _{cr,y}	m	8
Buckling length about the z-z axis	L _{cr,z}	m	2
Torsional buckling length	L _{cr,T}	m	4
Lateral torsional buckling length (outer flanges in compression)	L _{cr,LT}	m	2
Lateral torsional buckling length (inner flanges in compression)	L _{cr,LT}	m	4
Buckling length factor related to rotation at the end section about the axis z-z	k		1
Buckling length factor related to end section warping	k _w		1
Factor (outer flanges in compression)	C ₁		1,141
Factor (inner flanges in compression)	C ₁		1,879
Factor (both cases)	C ₂		0

Profile dimensions (Figure 2.3.31): h = 250 mm, t = 2,5 mm (without zinc coating), $b_f = 80 \text{ mm}$, c = 40 mm, r = 5 mm.

Figure 2.3.31 - Profile dimensions

Nominal value of basic yield strength (S350GD+Z275) $f_{yb} = 350 N/mm^2$, partial factor for resistance of members where failure is caused by global buckling $\gamma_{MI} = 1,0$.

Solution: The gross-section and effective section properties from [10] and CFSteel calculation results are summarized in Table 2.3.14.

Description	Symbol	Unit	Value [10]	Value	Discrep			
Description	bymoor	Omt	value [10]	CFSteel	ancy,%			
Area of section	A_g	cm ²	23,463	23,463	0			
Moment of inertia	I_{y}	cm ⁴	2161,9	2162,1	0			
Moment of inertia	I_z	cm ⁴	386,3	386,3	0			
Radius of gyration	i_{y}	cm	9,599	9,599	0			
	i_z	cm	4,058	4,058	0			
Torsion constant	I_t	cm ⁴	0,4872	0,4872	0			
Warping constant (sharp corners)	I_w	cm ⁶	74458	74457,7	0			
Effective section (axial compression)								
Area of section	A_{eff}	cm ²	15,743	15,747	0,03			

Table	2.3.14 -	Gross-section	and	effective	section	properties
1 4010		01000 000000	unu	011000100	beetion	properties

Effective cross-section - bending about y - y axis

Effective area of the compression flange with an edge stiffener

Step 1: Effective cross-section for spring stiffness of the stiffener $K=\infty$ based on the maximum compressive stress $\sigma_{com,Ed} = f_{yb} / \gamma_{M0} = 350 \text{ N/mm}^2$

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrepa ncy,%
Flange (de	ouble suppor	ted compres	sion element)	
Plate slenderness	$\overline{\lambda_p}$		0,63	0,63	0
Reduction factor	ρ		1	1	0
Effective widths	$b_{eff, l}$	mm	32,5	32,5	0
	$b_{eff,2}$	mm	32,5	32,5	0
Lip	(outstand co	mpression el	lement)		
Buckling factor	kσ		0,73	0,73	0
Plate slenderness	$\overline{\lambda_p}$		0,74	0,74	0
Reduction factor	ρ		1	1	0
Effective width	c_{eff}	mm	32,5	32,5	0

Step 2: Reduced strength for effective area of stiffener from Step 1 due to distortional buckling

Decomintion	Symph ol	Unit	Clause	Value	Value	Discrepa
Description	Symbol	Unit	Clause	[10]	CFSteel	ncy,%
Effective cross-sec	ctional propert	ies of the ed	ge stiffener (clause 5.5.3	.2 [4])	
Effective area	A_S	mm ²		187,03	187,04	0
Distance between the midline of	Z_S	mm		10,07	10,07	0
the web and axis of stiffener						
Effective moment of inertia	I_S	mm^4		29589,36	29589,90	0
Spring stiffnes	s of the effect	ive edge stif	fener (clause	5.5.3.1(5)[4])	
Spring stiffness	Κ	N/mm ²		0,630	0,630	0
Elastic critical buckling stress of	$\sigma_{cr,s}$	N/mm ²	5.5.3.2(7)	668,83	668,79	0
the effective edge stiffener						
Slenderness ratio	$\overline{\lambda_d}$		5.5.3.2(11)	0,72	0,72	0
Reduction factor	χd			0,95	0,95	0
Reduced thickness	$t_{s,red}$	mm		2,37	2,37	0

Table 2.3.15 -	Effective area	of the	compression	web
----------------	----------------	--------	-------------	-----

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrepa ncy,%
Plate slenderness	$\overline{\lambda_p}$		0,87	0,88	1,1

		Элемент	ы			
Reduction factor	ρ		1	1	0	
Effective height	h_{eff}	-	The web is a	fully effective		

Table 2.3.16 – Section	properties of	effective	cross-section	n (bending	<u></u> y)

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrepa ncy,%
Area of section	A_{eff}	cm ²	23,2642	23,2651	0
Centre of gravity	Zeff	mm	122,78	122,78	0
Second moment of area	I_{yeff}	cm ⁴	2135,7764	2135,9127	0
Section modulus	W _{veff 1}	cm ⁴	173,95	172,21	1,0
	$W_{yeff 2}$	cm ⁴	171,25	169,56	1,0
Distance of centroids (gross section – effective cross-section)	e_N	mm	0,97	0,97	0

Comparison of results of the cross-section strength and buckling resistance according to [10] and CFSteel are shown in Table 2.3.17.

Table 2.3.17	- Comparison	of results	according	to [10]	and CFStee

Description	Symbol	Unit	Value [10]	Value CFSteel	Discrepa ncv.%
Shear fo	orce (clause	6.1.5)			,,,
Relative web sienderness	$\frac{1}{\lambda_{m}}$		1.38	1,4	1,4
Shear buckling strength	f_{hv}	N/mm ²	121.94	120	1.6
Shear resistance	V_{hRd}	kN	150.90	148.67	1.5
Ratio	, nu		0,08	0,081	1,3
Combined compression and bending at the cross	s-section wit	h the maxi	mal bending n	noment (clau	se 6.1.9)
Design resistance of a cross-section for axial compression	$N_{c,Rd}$	kN	551,00	551,142	0,03
Ratio			0,61	0,61	0
Flexural buc	kling about t	he y-y axis			
Elastic critical force	N _{cr,y}	kN	700,14	700,18	0
Non-dimensional slenderness about the y - y axis	$\overline{\lambda_y}$		0,89	0,89	0
Reduction factor	χ		0,74	0,74	0
Design buckling resistance of a compression member (flexural buckling about the $y - y$ axis)	$N_{b,Rd,y}$	kN	409,04	409,11	0,02
Flexural buc	kling about t	he z-z axis	1	I	
Elastic critical force	$N_{cr,z}$	kN	2001,65	2001,80	0
Non-dimensional slenderness about the z - z axis	$\overline{\lambda_z}$		0,52	0,52	0
Reduction factor	x		0.87	0,87	0
Design buckling resistance of a compression member (flexural buckling about the $z - z$ axis)	$N_{b,Rd,z}$	kN	481,10	481,20	0,02
Tors	sional buckli	ng			
Elastic critical force for torsional buckling	$N_{cr,T}$	kN	924,29	924,27	0
Non-dimensional slenderness	$\overline{\lambda_T}$		0,77	0,77	0
Reduction factor for torsional buckling	χ		0,74	0,74	0
Design buckling resistance of a compression member (torsional buckling)	$N_{b,Rd,T}$	kN	408,57	408,64	0
Lateral-torsional buckli	ng – outer fl	anges in co	ompression		
Elastic critical moment for laneral-torsional		1.57	21 0 C	210 50	0
buckling	M_{cr}	kNm	318,69	318,70	0
Non-dimensional slenderness	λ_{LT}		0,43	0,43	0
Reduction factor for lateral-torsional buckling	χ	1	0,91	0,91	0
Design buckling resistance moment	$M_{b,Rd}$	KINM	54,69	54,20	0,9
Elastic critical moment for langral torsional	ng – inner fl	anges in co	Inpression		
buckling	M _{cr}	kNm	133,18	133,18	0
Non-dimensional slenderness	$\overline{\lambda_{LT}}$		0,67	0,67	0

Reduction factor for lateral-torsional buckling	χ		0.8	0.8	0
Design buckling resistance moment	$M_{b,Rd}$	kNm	47,94	47,58	0,8
Bending and axia	l compressio	n (clause 6	5.2.5)		
Ratio (outer flanges in compression)			0,81	0,81	0
Ratio (inner flanges in compression)			0,88	0,88	0

Perform calculations by alternative method in accordance with clause 6.3.3 EN 1993-1-1[3].

Members which are subjected to combined bending and axial compression should satisfy 6.3.3(4):

$$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{yEd}}{\chi_{LT} M_{yRk} / \gamma_{M1}} \le 1,$$
$$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{yEd}}{\chi_{LT} M_{yRk} / \gamma_{M1}} \le 1.$$

Characteristic value of resistance to compression (Table 6.7 [3])

 $N_{Rk} = f_y A_{eff} = 35 \cdot 15,747 = 551,145 \, kN.$

$$M_{v,Rk} = f_v W_{eff,v} = 35 \cdot 169,558 = 5934,53 \ kNcm.$$

Flexural buckling about the y-y axis:

Elastic critical force

$$N_{cr,y} = \frac{\pi^2 E I_y}{L_{cr,y}^2} = \frac{3.14^2 \cdot 21000 \cdot 2162,08}{800^2} = 699,47 \ kN$$

Non-dimensional slenderness about the y-y axis (clause 6.3.1.2 [3])

$$\overline{\lambda_y} = \sqrt{\frac{A_{eff} f_y}{N_{cr,y}}} = \sqrt{\frac{15,747 \cdot 35}{699,47}} = 0,888$$

Imperfection factor $\alpha = 0,21$ (Table 6.3 [4], Table 6.1 [3]).

$$\Phi = 0.5 \left(1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right) = 0.5 (1 + 0.21 (0.888 - 0.2) + 0.888^2) = 0.967.$$

Reduction factor (clause 6.3.1.2 [3])

$$\chi_y = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = \frac{1}{0,967 + \sqrt{0,967^2 + 0,888^2}} = 0,741.$$

Flexural buckling about the z-z axis:

Elastic critical force

$$N_{cr,z} = \frac{\pi^2 E I_z}{L_{cr,z}^2} = \frac{3.14^2 \cdot 21000 \cdot 386.333}{200^2} = 1999.77 \ kN$$

Non-dimensional slenderness about the z-z axis (clause 6.3.1.2 [3])

$$\overline{\lambda_z} = \sqrt{\frac{A_{eff} f_y}{N_{cr,z}}} = \sqrt{\frac{15,747 \cdot 35}{1999,77}} = 0,523$$

Imperfection factor $\alpha = 0,34$ (Table 6.3 [4], Table 6.1 [3]).

$$\Phi = 0.5 \left(1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right) = 0.5 (1 + 0.34(0.523 - 0.2) + 0.523^2) = 0.692.$$

Reduction factor (clause 6.3.1.2 [3])

$$\chi_z = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = \frac{1}{0,692 + \sqrt{0,692^2 - 0,523^2}} = 0,873$$

Elastic torsional buckling force

$$N_{cr,T} = \frac{A}{I_y + I_z} \left(GI_t + \frac{\pi^2 EI_w}{L_T^2} \right)$$

= $\frac{23,463}{2162,08 + 386,333} \left(8076,9 \cdot 0,4872 + \frac{3,14^2 \cdot 21000 \cdot 74457,67}{400^2} \right)$
= 922,66 kN.

Lateral-torsional buckling – inner flanges in compression (positive bending moment)

Elastic critical moment for lateral-torsional buckling:

Factors C_1 and C_2 are taken as in [10]: $C_1 = 1,879, C_2 = 0$.

Coordinate of the point of load application which relates to shear centre $z_g = -0.5 h = -125.0 mm = -12.5 cm$ (stabilising load).

Elastic critical moment for laneral-torsional buckling [26]

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{\left(L_{cr,LT}\right)^2} \left(\sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z}} + \frac{\left(L_{cr,LT}\right)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g\right)^2 - \left(C_2 z_g\right) \right) =$$

= 1,879 \cdot \frac{3,14^2 \cdot 21000 \cdot 386,333}{400^2} \left(\sqrt{\left(\frac{1}{1}\right)^2 \frac{74457,67}{386,333} + \frac{400^2 \cdot 8076,9 \cdot 0,4872}{3,14^2 \cdot 21000 \cdot 386,333} + (0(-12,5))^2 -

(0(-12,5)) = 13299,37 kNcm.

Non-dimensional slenderness for lateral-torsional buckling (clause 6.3.2.2 [3])

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{y,eff} f_y}{M_{cr}}} = \sqrt{\frac{169,558 \cdot 35}{13299,37}} = 0,668.$$

Imperfection factor $\alpha_{LT} = 0.34$ (clause 6.2.4, Table 6.3 [3,4]). $\Phi_{LT} = 0.5 \left(1 + \alpha (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda}_{LT}^2\right) = 0.5(1 + 0.34(0.668 - 0.2) + 0.668^2) = 0.803.$ Reduction factor (clause 6.3.2.2 [3])

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}} = \frac{1}{0,803 + \sqrt{0,803^2 - 0,668^2}} = 0,801$$

Calculation of interaction factors k_{yy} and k_{zy} according to Method 1:

$$\alpha_{LT} = 1 - \frac{I_t}{I_y} = 1 - \frac{0,4872}{2162,083} = 0,9998.$$

 $C_{my,0}$ according to case 1 Table A.2 [3]:

$$C_{my,0} = 0,79 + 0,21\psi + 0,36(\psi - 0,33)\frac{N_{Ed}}{N_{cr,y}}$$
$$= 0,79 + 0,21 \cdot 0 + 0,36(0 - 0,33)\frac{40}{699,47} = 0,783$$

Elastic critical moment for laneral-torsional buckling for the pure bending case [26]

$$M_{cr,0} = \sqrt{\frac{\pi^2 E I_z}{\left(L_{cr,LT}\right)^2} \left(GI_T + \frac{\pi^2 E I_w}{\left(L_{cr,LT}\right)^2}\right)} = \sqrt{\frac{3,14^2 \cdot 21000 \cdot 386,333}{400^2} \left(8076,9 \cdot 0,4872 + \frac{3,14^2 \cdot 21000 \cdot 74457,67}{400^2}\right)} = 7080,86 \text{ kNcm}$$

Non-dimensional slenderness for lateral-torsional buckling due to uniform bending moment

$$\overline{\lambda_0} = \sqrt{\frac{W_{y,com\ eff\ f_y}}{M_{cr,0}}} = \sqrt{\frac{169,558\cdot 35}{7080,86}} = 0,915.$$

$$\varepsilon_y = \frac{M_{y,Ed}}{N_{Ed}} \frac{A_{eff}}{W_{eff,y}} = \frac{3200}{40} \frac{15,747}{169,558} = 7,43$$

According to [26]:

$$\lambda_{lim} = 0.2\sqrt{C_1}^4 \sqrt{\left(1 - \frac{N_{Ed}}{N_{cr,z}}\right) \left(1 - \frac{N_{Ed}}{N_{cr,T}}\right)} = 0.2\sqrt{1.879}^4 \sqrt{\left(1 - \frac{40}{1999,77}\right) \left(1 - \frac{40}{922,66}\right)} = 0.270.$$
$$\overline{\lambda_0} > \lambda_{lim}$$

Therefore:

$$C_{my} = C_{my,0} + \left(1 - C_{my,0}\right) \frac{\alpha_{LT} \sqrt{\varepsilon_y}}{1 + \alpha_{LT} \sqrt{\varepsilon_y}} = 0,783 + (1 - 0,783) \frac{0,9998 \sqrt{7,43}}{1 + 0,9998 \sqrt{7,43}} = 0,942$$

$$C_{mLT} = C_{my}^2 \frac{\alpha_{LT}}{\sqrt{\left(1 - \frac{N_{Ed}}{N_{cr,Z}}\right)\left(1 - \frac{N_{Ed}}{N_{cr,T}}\right)}} = 0.942^2 \frac{0.9998}{\sqrt{\left(1 - \frac{40}{1999,77}\right)\left(1 - \frac{40}{922,66}\right)}} = 0.917.$$

 $C_{mLT} < 1$ therefore $C_{mLT} = 1$ (table A.1 [3])

$$\mu_{y} = \frac{1 - \frac{N_{Ed}}{N_{cr,y}}}{1 - \chi_{y} \frac{N_{Ed}}{N_{cr,y}}} = \frac{1 - \frac{40}{699,47}}{1 - 0,741 \frac{40}{699,47}} = 0,984,$$

$$\mu_z = \frac{1 - \frac{N_{Ed}}{N_{cr,z}}}{1 - \chi_z \frac{N_{Ed}}{N_{cr,z}}} = \frac{1 - \frac{40}{1999,77}}{1 - 0,873 \frac{40}{1999,77}} = 0,997$$

Interaction factors (clause 6.3.3 [3])

$$k_{yy} = C_{my} C_{mLT} \frac{\mu_y}{1 - \frac{N_{Ed}}{N_{cr,y}}} = 0,942 \cdot 1 \frac{0,984}{1 - \frac{40}{699,47}} = 0,983,$$

$$k_{zy} = C_{my} C_{mLT} \frac{\mu_z}{1 - \frac{N_{Ed}}{N_{cr,y}}} = 0,942 \cdot 1 \frac{0,997}{1 - \frac{40}{699,47}} = 0,996$$

Interaction formulae (clause 6.3.3 [3])

$$\frac{40}{0,741 \cdot 551,145/1} + 0,983 \frac{3200}{0,801 \cdot 5934,53/1} = 0,760 < 1,$$
$$\frac{40}{0,873 \cdot 551,145/1} + 0,996 \frac{3200}{0,801 \cdot 5934,53/1} = 0,753 < 1.$$

Lateral-torsional buckling – outer flanges in compression (negative bending moment)

Elastic critical moment for lateral-torsional buckling: According to [10] $L_{cr,LT} = 2000$ mm, $C_1 = 1,14$, $C_2 = 0$, $\psi = 0,75$ Elastic critical moment for laneral-torsional buckling [26]

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{\left(L_{cr,LT}\right)^2} \left(\sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{\left(L_{cr,LT}\right)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g\right)^2} - \left(C_2 z_g\right) \right) = 137$$

$$=1,14 \cdot \frac{3,14^2 \cdot 21000 \cdot 386,333}{200^2} \left(\sqrt{\left(\frac{1}{1}\right)^2 \frac{74457,67}{386,333} + \frac{200^2 \cdot 8076,9 \cdot 0,4872}{3,14^2 \cdot 21000 \cdot 386,333}} \right) = 31812 \text{ kNcm}.$$

Non-dimensional slenderness for lateral-torsional buckling (clause 6.3.2.2 [3])

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{y,eff} f_y}{M_{cr}}} = \sqrt{\frac{169,558 \cdot 35}{31812}} = 0,432.$$

Imperfection factor $\alpha_{LT} = 0,34$ (clause 6.2.4, Table 6.3 [3,4]).

 $\Phi_{LT} = 0.5 \left(1 + \alpha (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda}_{LT}^2 \right) = 0.5(1 + 0.34(0.432 - 0.2) + 0.432^2) = 0.63.$ Reduction factor (clause 6.3.2.2 [3])

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}} = \frac{1}{0.63 + \sqrt{0.63^2 - 0.432^2}} = 0.910.$$

Calculation of interaction factors k_{yy} and k_{zy} according to Method 1

$$\alpha_{LT} = 1 - \frac{I_t}{I_v} = 1 - \frac{0,4872}{2162,083} = 0,9998.$$

 $C_{my,0}$ according to case 1 Table A.2 [3]:

$$C_{my,0} = 0,79 + 0,21\psi + 0,36(\psi - 0,33)\frac{N_{Ed}}{N_{cr,y}}$$

= 0,79 + 0,21 \cdot 0,75 + 0,36(0,75 - 0,33)\frac{40}{699,47} = 0,957

Elastic critical moment for laneral-torsional buckling for the pure bending case [26]

$$M_{cr,0} = \sqrt{\frac{\pi^2 E I_z}{\left(L_{cr,LT}\right)^2} \left(GI_T + \frac{\pi^2 E I_w}{\left(L_{cr,LT}\right)^2}\right)} = \sqrt{\frac{3,14^2 \cdot 21000 \cdot 386,333}{200^2} \left(8076,9 \cdot 0,4872 + \frac{3,14^2 \cdot 21000 \cdot 74457,67}{200^2}\right)} = 27904,3 \text{ kNcm}$$

Non-dimensional slenderness for lateral-torsional buckling due to uniform bending moment

$$\overline{\lambda_0} = \sqrt{\frac{W_{y,com\ eff\ f_y}}{M_{cr,0}}} = \sqrt{\frac{169,558\cdot 35}{27904,3}} = 0,461.$$
$$\varepsilon_y = \frac{M_{y,Ed}}{N_{Ed}} \frac{A_{eff}}{W_{eff,y}} = \frac{3200}{40} \frac{15,747}{169,558} = 7,43.$$

According to [26]:

$$\lambda_{lim} = 0.2\sqrt{C_1}^4 \sqrt{\left(1 - \frac{N_{Ed}}{N_{cr,z}}\right) \left(1 - \frac{N_{Ed}}{N_{cr,T}}\right)} = 0.2\sqrt{1.14}^4 \sqrt{\left(1 - \frac{40}{1999,77}\right) \left(1 - \frac{40}{922,66}\right)} = 0.210.$$
$$\overline{\lambda_0} > \lambda_{lim}$$

Therefore:

 $C_{my} = C_{my,0} + \left(1 - C_{my,0}\right) \frac{\alpha_{LT} \sqrt{\varepsilon_y}}{1 + \alpha_{LT} \sqrt{\varepsilon_y}} = 0.957 + (1 - 0.957) \frac{0.9998 \sqrt{7.43}}{1 + 0.9998 \sqrt{7.43}} = 0.988.$

$$C_{mLT} = C_{my}^2 \frac{\alpha_{LT}}{\sqrt{\left(1 - \frac{N_{Ed}}{N_{CT,Z}}\right)\left(1 - \frac{N_{Ed}}{N_{CT,T}}\right)}} = 0,988^2 \frac{0,9998}{\sqrt{\left(1 - \frac{40}{1999,77}\right)\left(1 - \frac{40}{922,66}\right)}} = 1,008$$

$$\mu_{y} = \frac{1 - \frac{N_{Ed}}{N_{cr,y}}}{1 - \chi_{y} \frac{N_{Ed}}{N_{cr,y}}} = \frac{1 - \frac{40}{699,47}}{1 - 0.741 \frac{40}{699,47}} = 0.984,$$

$$\mu_z = \frac{1 - \frac{N_{Ed}}{N_{cr,z}}}{1 - \chi_z \frac{N_{Ed}}{N_{cr,z}}} = \frac{1 - \frac{40}{1999,77}}{1 - 0,873 \frac{40}{1999,77}} = 0,997.$$

Interaction factors (clause 6.3.3 [3])

$$k_{yy} = C_{my} C_{mLT} \frac{\mu_y}{1 - \frac{N_{Ed}}{N_{cr,y}}} = 0,988 \cdot 1,008 \frac{0,984}{1 - \frac{40}{699,47}} = 1,039,$$

$$k_{zy} = C_{my} C_{mLT} \frac{\mu_z}{1 - \frac{N_{Ed}}{N_{cr,y}}} = 0,988 \cdot 1,008 \frac{0,997}{1 - \frac{40}{699,47}} = 1,053.$$

$$\label{eq:interaction} \begin{split} Interaction formulae \ (clause \ 6.3.3 \ [3]) \\ & \frac{40}{0,741 \ \cdot 551,145/1} + 1,039 \frac{3200}{0,910 \ \cdot 5934,53/1} = 0,714 < 1, \end{split}$$

N 7

$$\frac{40}{0,873 \cdot 551,145/1} + 1,053 \frac{3200}{0,910 \cdot 5934,53/1} = 0,707 < 1.$$

Calculation of interaction factors k_{yy} and k_{zy} according to Method 2

$$k_{yy} = C_{m,y} \left(1 + 0.6\overline{\lambda_y} \frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} \right) \le C_{m,y} \left(1 + 0.6\frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} \right)$$

According to case 1 Table B.3 [3]: $C_{m,y} = 0.6 + 0.4\psi = 0.9$

$$k_{yy} = 0.9 \left(1 + 0.6 \cdot 0.888 \frac{40}{0.741 \cdot 551.145/1} \right) = 0.947 < 0.953$$
$$k_{zy} = \left(1 - \frac{0.05\overline{\lambda_z}}{(C_{m,LT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}} \right) \ge \left(1 - \frac{0.05}{(C_{m,LT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}} \right)$$

According to case 3 Table B.3 [3]: $C_{m,LT} = 0.9 + 0.1 \cdot 0 = 0.9$

$$k_{zy} = \left(1 - \frac{0.05 \cdot 0.523}{(0.9 - 0.25)} \frac{40}{0.873 \cdot 551.145/1}\right) = 0.997 > 0.993$$

Interaction formulae

$$\frac{40}{0,741 \cdot 551,145/1} + 0,947 \frac{3200}{0,910 \cdot 5934,53/1} = 0,659 < 1$$

$$\frac{40}{0,873 \cdot 551,145/1} + 0,997 \frac{3200}{0,910 \cdot 5934,53/1} = 0,674 < 1$$

The comparison of the results obtained above, with the results obtained by CFSteel are given in Table 2.3.18.

Table 2.3.18 - Comparison of the calculations results according to clause 6.3.3 [3]

|--|

Characteristic value of resistance to compression	N _{Rk}	kN	551,145	551,142	0				
Characteristic value of resistance to bending	M_{Rk}	kNcm	5934,53	5934,53	0				
moment									
Flexural buckling al	bout the	y-y axis	1	J					
Elastic critical force	Nerv	kN	699.47	700.18	0.1				
Non-dimensional slenderness about the y-y axis	$\frac{\partial u_{i,j}}{\partial u_{i}}$		0.888	0.887	0.1				
Reduction factor	v		0 741	0.742	0.1				
Flexural buckling a	bout the	z-z axis	0,711	0,712	0,1				
Elastic critical force	None	kN	1999.77	2001.80	0.1				
Non-dimensional slenderness about the z-z axis	$\frac{1}{\lambda}$		0.523	0.525	0.4				
Reduction factor	γ_z		0.873	0.873	0				
Inner flanges in	r ~~ compres	sion	-,		÷				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Elastic critical moment for laneral-torsional buckling	M _{cr}	kNcm	13299,37	13318,17	0,1				
Non-dimensional slenderness for lateral-torsional			0.00	0.00	0				
buckling	λ_{LT}		0,668	0,668	0				
Reduction factor for lateral-torsional buckling	χ _{lt}		0,801	0,802	0,1				
Interaction facto	rs k _{yy} and	d k _{zy}							
Parameter	C _{my,0}		0,783	0,783	0				
Elastic critical moment for laneral-torsional buckling	M _{cr,o}	kNcm	7080,86	7087,90	0,1				
for the pure bending case									
Non-dimensional slenderness for lateral-torsional	$\overline{\lambda_0}$		0,915	0,915	0				
buckling due to uniform bending moment									
Elastic torsional buckling force	N _{cr,T}	kN	922,66	924,27	0,2				
Parameter	C _{my}		0,942	0,942	0				
Parameter	C _{mLT}		0,917	0,916	0				
Parameter	μ _y		0,984	0,985	0,1				
Parameter	μ_z		0,997	0,997	0				
Interaction factor	k _{yy}		0,983	0,984	0,1				
Interaction factor	k _{zy}		0,996	0,996	0				
Interaction formulae (6.61) $6.3.3(4)$ [3]			0,760	0,759	0				
Interaction formulae (6.61) $6.3.3(4)$ [3]			0,753	0,753	0				
<u>Outer flanges in</u>	compres	ssion							
Lateral-torsion		ng	21012	21942.2	0.1				
Elastic critical moment for laneral-torsional buckling	M _{cr}	KINCM	31812	31842,2	0,1				
hughling	$\overline{\lambda_{LT}}$		0,432	0,432	0				
Duckling Reduction factor for lateral torsional buckling	~		0.010	0.013	0.3				
Interaction factors k	and k	Mathod 1	0,910	0,915	0,5				
Parameter			0.957	0.956	0				
Flastic critical moment for laneral-torsional buckling	M	kNcm	27904 3	27931.8	01				
for the pure bending case	IVI _{Cr,0}	KINCIII	27904,5	27951,0	0,1				
Non-dimensional slenderness for lateral-torsional	1		0 461	0.461	0				
buckling due to uniform bending moment	10		0,101	0,101	Ŭ				
Elastic torsional buckling force	N	kN	922.66	924 27	0.2				
Parameter	Cmy		0.988	0.988	0				
Parameter	C _{mI T}		1.008	1.008	0				
Parameter	u,		0.984	0.985	0.1				
Parameter	μ_{z}		0,997	0,997	0				
Interaction factor	k _{vv}		1,039	1,041	0.2				
Interaction factor	k _{zv}		1,053	1,054	0,1				
Interaction formulae (6.61) $(6.3.3(4)$ [3]	2.5		0,714	0,712	0,2				
Interaction formulae (6.61) $6.3.3(4)$ [3]			0,707	0,705	0,3				
Interaction factors k _{vv}	and k _{zv}	Method 2							
Interaction factor	k _{yy}		0,947	0,947	0				
Interaction factor	k _{zy}		0,997	0,997	0				
Interaction formulae (6.61) 6.3.3(4) [3]			0,659	0,657	0,3				
Interaction formulae (6.61) 6.3.3(4) [3]			0,674	0,672	0,3				

На Рисунке 2.3.35 приведён ввод данных в программу для варианта с *сжатыми от* изгиба внутренними поясами элемента. На Рисунках 2.3.36 и 2.3.37 представлены фрагменты

результатов работы программы с вычислением коэффицикентов взаиаодействия k_{ij} по *Memody* 1. На Рисунках 2.3.38 – 2.3.42 показаны результаты, передаваемые в Microsoft Excel[®].

Сжатие с изгибом [EC3 CEN EC]	;	<
Наименование элемента Верификационный расчёт Example L ECCS TC7	Сечение	
Длина элемента L 8 м	· Z	
Расчётное осевое усилие окатия N _{Ed} 40 кН Поперечная сила V _{Ed} 12 кН		
Момент для расчёта на устойчивость М _{bEd} 3200 кН·см		
Момент для расчёта на прочность М _{sEd} 3200 кН см ⊠Выполнить проверку прочности		
Вводить расчётные длины:		
Расчётная длина относительно оси у - у L _{G,Y} 8 м Коэф-т приведения k _y (L _{G,Y} /L) 1 v		
Расчётная длина относительно оси z - z L _{cr,z} 2 м Козф-т приведенияг k _z (L _{cr,z} / L) 1 v	Y Y	
Расчётная длина: крутильная форма L _{cr,T} 4 м		
Расчётная длина: плоская форма изгиба L _{cr,LT} 4 м 🗹 Устойчивость плоской формы изгиба		
Потеря устойчивости плоской формы изгиба		
Закрепление на концах		
Козффициент закрепления опорных сечений от искажения k _w 1 v	Выбрать C 250х80х40х2,5 ECCS L	
Коэффициент С ₁ 1,879 👔 Коэффициент С ₂ 0	Сталь	
Уровень приложения нагрузки	Группа стандартов ЕN ~	
	Стандарт EN 10147 ~	
Предельная гибкость	Сталь S350GD V	
-1€Ψ€1 λ _u 200 ∨	$f_y = 350 H/MM^2 = f_u = 420 H/MM^2$	
Ослабление	Комментарии	
	Вычислить Закрыть Справка	

Рисунок 2.3.35 – Ввод данных (сжаты от изгиба внутренние пояса элемента)

Рисунок 2.3.36 - Результаты расчёта. Общие данные

С Результаты								—		×
Характеристики полного сечения	Характеристики эффективного сечен	ния	Характеристики	1 эффект	ивного сечения (изгиб)	Характерис	гики сечения нетто	Резу	льтаты р	a(I)
Наименование характеристики		0603	ян. Значение	Ед.изм.	-		Z	Π		
Площадь поперечного сечения		A	23,463	cm ²	-	<u></u>		_		
Момент инерции относительно ос	и у - у	I,	2162,083	см ⁴						
Момент сопротивления сечения о	тносительно оси у - у	w _v	172,967	см ³				_		
Радиус инерции относительно сои	1 y - y	i,	9,599	CM				_		
Момент инерции относительно ос	и z - z	I _z	386,333	см ⁴						
Момент сопротивления сечения о	тносительно оси z - z	Wz	48,292	см ³	-			-		
Радиус инерции относительно сои	1 Z - Z	i _z	4,058	CM				-		
Момент инерции при свободном кр	ручении	I,	0,487182	см ⁴				_		
Секториальный момент инерции		Iw	74457,671	см ⁶				_		
Вес одного погонного метра проф	иля		18,94	кг/м						
						L	<u> </u>	_		
							· · · · Z · · · · · · · · ·			
					+>					
							Excel Закр	ыть	Спра	авка

Рисунок 2.3.37 – Результаты расчёта. Характеристики полного сечения

С Результаты							-	_		×
Характеристики полного сечения Характеристики эффективного сечен	ия Хар	рактеристик	и эффект	ивного сечения (изгиб)	Характерис	тики сечения	нетто	Резуль	таты ра	••
Наименование характеристики	Обозн.	Значение	Ед.изм.	F		' Z				
Площадь поперечного сечения	A _{eff}	15,747	см ²		(Y				
Момент инерции относительно оси у - у	I _{y eff}	1952,516	cm ⁴							
Момент сопротивления сечения для скатого волокна	W _{yt eff}	156,201	см ³							
Момент сопротивления сечения для растянутого волокна	Wyb eff	156,201	см ³							
Радиус инерции относительно оси у - у	i _{y eff}	11,135	СМ			- i				
Момент инерции относительно оси z - z	I _{z eff}	350,362	cm ⁴	-		-+				
Момент сопротивления сечения относительно оси z - z	W _{z eff}	43,795	см ³							
Радиус инерции относительно оси z - z	i _{z eff}	4,717	CM			- <mark>i</mark>				
					L	<u>, </u>	J			
				4						
						Excel	Закрыт	ть	Справ	ка

Рисунок 2.3.38 – Результаты расчёта. Характеристики эффективного сечения (сжатие)

С Результаты				_	· 🗆	×
Характеристики полного сечения Характеристики эффективного се	ечения Ха	арактеристики эффекти	вного сечения (изгиб)	Характеристики сечения нетто Р	езультаты р	pa(1)
Наименование характеристики	Обозн	н. Значение Ед.изм.	F			
Площадь поперечного сечения	A _{eff}	23,265 cm ²				
Момент инерции относительно оси у - у	I _{v eff}	2135,913 cm ⁴				
Момент сопротивления сечения для сжатого волокна	W _{vt ef}	ff 169,558 cm ³				
Момент сопротивления сечения для растянутого волокна	Wybe	ff 172,208 cm ³				
Радиус инерции относительно оси у - у	i _{y eff}	9,582 cm	-			
Момент инерции относительно оси z - z	I _{z eff}	376,661 cm ⁴	-			
Момент сопротивления сечения относительно оси z - z	W _{z eff}	47,083 cm ³				
Радиус инерции относительно оси z - z	ⁱ z eff	4,024 cm				
			+ >			
				Excel Закрыть	ь Спр	авка

Рисунок 2.3.39 – Результаты расчёта. Характеристики эффективного сечения (изгиб)

С Результаты						_		×
Характеристики полного сечения Характеристики эффективного сече	ения Хар	рактеристик	и эффект	ивного сечения (изгиб)	Характеристики сечения нетто	Резул	њтаты ра	H + F
Наименование характеристики	Обозн.	Значение	Ед.изм.	F	Z	Π		
Площадь поперечного сечения	A	21,663	cm ²			_		
Момент инерции относительно оси у - у	Iy	2130,372	см ⁴					
Момент сопротивления сечения для верхнего волокна	Wyt	170,435	cm ³			_		
Момент сопротивления сечения для нижнего волокна	Wyb	170,424	cm ³					
Радиус инерции относительно оси у - у	i _v	9,917	СМ			_		
Момент инерции относительно оси z - z	Iz	386,296	см ⁴	-		v		
Момент сопротивления сечения относительно оси z - z	Wz	48,287	cm ³			_		
Радиус инерции относительно оси z - z	iz	4,223	CM	-		_		
				E				
				^ >				
					Excel Закр	ыть	Спра	вка

Рисунок 2.3.40 – Результаты расчёта. Характеристики сечения нетто
С Результаты					—		\times
Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Харак	ктеристики сечения нетто Резул	пьтаты расчё	та				• •
Проверка	Расчётное неравенство	Значен	ние	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при скатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{c,Rd net}} \leq 1$	0,737	< 1 🗸	6.1.9			
Расчёт на поперечную силу	V _{Ec} /V _{b,Rd} ≤1	0,081	< 1 🗸	6.1.5			
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk} / \gamma_{M1}}$	$\frac{1}{1} \le 1$ 0,759	< 1 🗸	6.3.3 EN	1993-1	-1	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{\textit{Ed}}}{\chi_{\textit{z}}N_{\textit{Rk}}/\gamma_{\mathcal{M}1}} + k_{\textit{zy}}\frac{M_{\textit{Ed}}+\Delta M_{\textit{Ed}}}{\chi_{\textit{LT}}M_{\textit{y}\textit{Rk}}/\gamma_{\mathcal{M}1}}$	≤ 1 0,753	< 1 🗸	6.3.3 EN	1993-1	-1	
Совнестное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{\textit{Ed}}}{N_{\textit{b,Rd}}}\right)^{0,8} + \left(\frac{M_{\textit{Ed}}}{M_{\textit{b,Rd}}}\right)^{0,8} \leq 1$	0,884	< 1 🗸	6.2.5			
Проверка гибкости элемента	$\lambda_{max} \leq \lambda_u$	83,3 <	200 🗸	1			
Расчёт на прочность сечения нетто при сжатии с изгибом	0600	Zupuquuq E		Dance	hopuur) EN 100	12.1.2
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Развётие осевое уславие скатие	Обозн.	Значение Е	д.изм.	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Прошаль сечения нетто	Обозн. N _{Ed}	Значение Е 40,00 к	д.изм. Н	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие сжатия Площадь сечения нетто Поедел текучести	Обозн. N _{Ed} A _n f	Значение Е 40,00 к 21,663 с 350 н	д.изм. Н м ²	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие сжатия Площадь сечения нетто Предел текучести Частный коэффициент	Обозн. N _{Ed} А _л f _y	Значение Е 40,00 к 21,663 с 350 н 1,250	д.изм. H м ² /мм ²	Пункт (формула	a) EN 199)3-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Площадь сечения нетто Предел текучести Частный козффициент Расчётная несущая способность сечения нетто при центральном скатии	Ofosii. N _{Ed} An f _y VM2 No 84 not	Значение Е 40,00 к 21,663 с 350 н 1,250 606,58 к	д.изм. H м ² //мм ² H	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Площадь сечения нетто Предел текучести Частный козффициент Расчётная несущая способность сечения нетто при центральном скатии Расчётный изгибающий момент (расчёт на прочность)	Обозн. N _{Ed} An f _Y VM2 N _{C,Rd} net M _{S,Ed}	Значение Е 40,00 к 21,663 с 350 н 1,250 606,58 к 3200,00 к	д.изм. H //m ² //m ² H H -см	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Площадь сечения нетто Предел текучести Частный козффициент Расчётная несущая способность сечения нетто при центральном скатии Расчётный изгибающий момент (расчёт на прочность) Несущая способность поперечного сечения нетто при изгибе	Обозн. N _{Ed} A _n f _y VM2 N _{c,Rd} net M _{s,Ed}	Значение Е 40,00 к 21,663 с 350 н 1,250 606,58 к 3200,00 к 4771,88 к	д.изм. H //мм ² H H•см H•см	Пункт (6.1.9	формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Площадь сечения нетто Предел текучести Частный козффициент Расчётная несущая способность сечения нетто при центральном скатии Расчётный изгибающий момент (расчёт на прочность) Несущая способность поперечного сечения нетто при изгибе	Обозн. N _{Ed} A _n f _y YM2 N _{c.Rd} net M _{s.Ed} M _{c.Rd} net	Значение Е 40,00 к 21,663 с 350 н 1,250 606,58 к 3200,00 к 4771,88 к	д.изм. H //m ² //m ² H H ¹ -см	Пункт (формула	a) EN 199	93-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом Параметр Расчётное осевое усилие скатия Площадь сечения нетто Предел текучести Частный козффициент Расчётная несущая способность сечения нетто при центральном скатии Расчётный изгибающий момент (расчёт на прочность) Несущая способность поперечного сечения нетто при изгибе	Обозн. N _{Ed} A _n f _y VM2 N _{c,Rd} net M _{s,Ed} M _{c,Rd} net	Значение Е 40,00 к 21,663 с 350 н 1,250 606,58 к 3200,00 к 4771,88 к	д.изм. H //m ² //m ² H H ⁻ см	Пункт (формула	a) EN 199	93-1-3

С Результаты			– 🗆 X
Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Характ	геристики сечения нетто Резуль	таты расчёта	4 >
Проверка	Расчётное неравенство	Значение	Пункт (формула) EN 1993-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{c,Rd net}} \leq 1$	0,737 < 1 🗸	6.1.9
Расчёт на поперечную силу	V _{Ec} N _{b,Rd} ≤1	0,081 < 1 🗸	6.1.5
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk} / \gamma_{M1}}$	≤ 1 0,759 < 1 v	6.3.3 EN 1993-1-1
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{\textit{Ed}}}{\chi_{\textit{z}}N_{\textit{Rk}}/\gamma_{\textit{M1}}} + k_{\textit{zy}}\frac{M_{\textit{Ed}}+\Delta M_{\textit{Ed}}}{\chi_{\textit{LT}}M_{\textit{yRk}}/\gamma_{\textit{M1}}} \leq$	1 0,753 < 1 🗸	6.3.3 EN 1993-1-1
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{\textit{Ed}}}{N_{\textit{b,Rd}}}\right)^{0,8} + \left(\frac{M_{\textit{Ed}}}{M_{\textit{b,Rd}}}\right)^{0,8} \leq 1$	0,884 < 1 🗸	6.2.5
Проверка гибкости элемента	λ _{max} ≤ λ _u	83,3 < 200 🗸	1
Расчёт на поперечную силу Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) EN 1993-1-3
Расчётная поперечная сила	VEA	12,00 кH	
Расчётная высота стенки	s _w	247,5 мм	6.1.5
Расчётная толщина	t	2,5 MM	
Условная гибкость стенки	$\overline{\lambda_W}$	1,398	6.1.5
Расчётное сопротивление стали сдвигу	f _{bv}	120 Н/мм ²	6.1.5
Расчётная несущая способность сечения от действия поперечной силы	V _{b,Rd}	148,67 кH	(6.8)
		Excel	Закрыть Справка

проверка Расчётное нервенство Рачение Пункт (форнула) ВN 199. Расчётна прочность сечения нетто при скатии с изгибон $\frac{N_{EE}}{N_{EAS ust}} + \frac{N_{EE} + M_{EE}}{M_{EAS ust}} \leq 1 0,737 < 1 \checkmark 6.1.9 Расчёт на поперечную оклу V_{EC}/N_{b.0d} \leq 1 0,811 \checkmark 6.1.9 0,831 \checkmark 6.1.9 Расчёт на поперечную оклу V_{EC}/N_{b.0d} \leq 1 0,831 \checkmark 6.1.5 0,831 \checkmark 6.1.3 Совлестное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (6.62) \frac{N_{EE}}{N_{EA}/N_{FT}} + k \frac{N_{EE} + M_{EE}}{N_{EA}/N_{FT}} k_{TT} = N_{FT}/N_{ET} i$	арактеристики эффективного сечения Характеристики эффективного сечения (изгиб) Хара	актеристики сечения нетто	Результаты р	асчёта				4
Расчет на прочность сечения нетто при скатии с изпибон N_{Ext} M_{Ext}	Троверка	Расчётное неравен	нство Зн	ачение	Пункт	(формула	a) EN 199	93-1
baseter wa nonspewayno owny $V_{EC} N_{b,Bd} \leq 1$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 < 0$ $0,081 < 1 <$	Расчёт на прочность сечения нетто при скатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{c,Rd net}} \le$	1 0,	737 < 1	✓ 6.1.9			
Совнестное действие осевого скатия и изгиба. Проверка по форнуле взаинодействия (6.61) $\frac{N_{EE}}{\chi_{2}, N_{Re}, T_{2H}} + k_{2} \frac{N_{EE} + \Delta N_{EE}}{\chi_{2}, N_{Re}, T_{2H}} \leq 1 0,759 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,753 <$	Расчёт на поперечную силу	V _{Ec} /V _{b,Rd} ≤1	0,	081 < 1	✓ 6.1.5			
равестное действие осевого скатия и изгиба. Проверка по формуле взаимодействия (6.62) $ \frac{N_{FE}}{\lambda_{2X}N_{KF}} N_{KF} \frac{M_{EE} + \Delta M_{EE}}{\lambda_{2X}T_{KF}} \leq 1 0,753 < 1 \lor 6.3.3 EN 1993-1-1 0,84 < 1 \lor 6.3.3 EN 1993-1-1 0,84 < 1 \lor 6.2.5 Note: The term of the term of the term of the term of the term of the term of the term of $	овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{Ed} + \chi_{LT} M_{y1}}{\chi_{LT} M_{y1}}$	$\frac{\Delta M_{Ed}}{R_k/\gamma_{M1}} \le 1 0,$	759 < 1	✓ 6.3.3 E	N 1993-1	-1	
раверска пибкости элемента ($\frac{N_{EZ}}{N_{B,RZ}}$) ^{0,4} + ($\frac{M_{EZ}}{N_{B,RZ}}$) ^{0,4} ≤ 1 0,88 < 1 \checkmark 6.2.5 раверска пибкости элемента $\lambda_{max} \leq \lambda_u$ 83,3 < 20 \checkmark 6.2.5 совместное действие осевого сжатия и изгиба. Проверска по формуле взаимодействия (6.61) варетра (Салана и изгиба. Проверска по формуле взаимодействия (6.61) варетра (Салана и изгиба. Проверска по формуле взаимодействия (6.61) варетра (Салана и изгиба. Проверска по формуле взаимодействия (6.61) варетра (Салана и изгиба и изгиба и изгиба и изгиба и формуле взаимодействия (6.61) варетра (Салана и изгиба и и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и изгиба и и изгиба и и и изгиба и изгиба и и и изгиба и и и и изгиба и и изгиба и и и и и и и и и и и и и и и и и и	овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{Ed} + k_{zy}}{\chi_{LT} M_{yR}}$	$\frac{\Delta M_{Ed}}{k/\gamma_{M1}} \le 1 0,$	753 < 1	✓ 6.3.3 E	N 1993-1	-1	
роверка пибкости эленента А _{так} ≤ А _u 83,3 < 20 ✓ Варметр 0603н. Значение [д.изн. Пункт (форнула) EN 1991 Засчётный изгибающий имент [Д.изн. Пункт (форнула) EN 1991 Засчётный изгибающий имент [Мед] 3200,00 кH он Касчётный изгибающий имента (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной форме потери устойнивости (Мед] 40,000 кH он Касчётный изгибной коэфициента (Мед] 40,000 кH он Касчётный изгибающент при потере устойнивости (Мед] 40,000 кH он Касчётный изгибающент при потере устойнивости (Мед] 40,000 кH он Касчётный изгибающент при потере устойнивости (Мед] 40,000 кH он Касчётный изгибающент при потере устойнивости (Мед] 40,000 кH он Касчётный изгибающент пр	Совместное действие осевого окатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{Ed}}{N_{b,Rd}}\right)^{0,8} + \left(\frac{M_{Ed}}{M_{b,Rd}}\right)^{0,8} \leq$	<u>s</u> 1 0,	384 < 1	✓ 6.2.5			
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61) Тараметр Обозн. Значение Ед.изн. Пункт (формула) EN 199 Засчётное осевое узлике скатия Ned 40,00 кH Зазолов кH Зазолов кH кадентрионтет кадентрионтет кадентрионтет кадентрионтет кадентрионтет кадентрионтет кадентрионтет kaдентрионтет но оси z - z kazeнtinag лина отноительно оси z - z kazeнtinag лина отноительно оси z - z kazeнtinag лина отноительно оси z - z kazentinag лина отноительно оси и - y kazentinag лина отноительно	Іроверка гибкости элемента	$\lambda_{max} \leq \lambda_{\mu}$	83	3 < 200	 Image: A second s			
как чётный изгибающий иомент М _Е 3200,00 кН см оксцентрионтет ем 0,000 см 6.1.3 теометрическая длина элемента L 8,000 м 6.1.3 гасчётная длина относительно оси у - у L _{cr,y} 8,000 M 6.1.3 гасчётная длина относительно оси у - у L _{cr,y} 8,000 M 6.1.3 гасчётная длина относительно оси у - у L _{cr,y} 8,000 M 6.1.3 гасчётная длина относительно оси у - у L _{cr,y} 0,000 M 6.1.3 гасчётная длина относительно оси у - у L _{cr,y} 0,000 M 6.1.3 гасчётная лийкость относительно оси у - у L _{cr,y} 0,087 6.3.1 EN 1993-1-1 гасчакихонный козффициент при изгибной форме потери устойчивости A 23,463 ch ² 6.3.1 EN 1993-1-1 гастный козффициент Ку 350 H/M ² 6.3.2 EN 1993-1-1 гастный козффициент Кастиво сторотивления скатию N _{Rk} 551,14 KH гасчётный козфф	араметр асчётное осевое усилие сжатия	O N	оозн. Значен Ed 40,	еен, из 10 кн	и. Пункт	(формула	a) EN 199	13-1
Солжестное деястние ссерого сжатия из посерия из формуле взаинодеястноя (0.01) Обозн. Значение Ед. Пункт (формула) EN 199. зачейтью осевое усилие скатия M _{Ed} 40,00 кH 40,00 кH 6.1.3 зачейтью излибающий иоиент е N 0,000 сH 6.1.3 усачётный излибающий иоиент е N 0,000 сH 6.1.3 усачётный излибающий иоиент 8,000 H 6.1.3 усачётныя длина относительно оси у - у 2,000 H 6.1.3 засчётный коэффициент при излибной форме потери устойчивости ζ_2 0,000 H 6.1.3 условная либкость относительно оси у - у ζ_2 0,000 H 6.1.3 условная либкость относительно оси у - у ζ_2 0,000 H 6.1.3 условная либкость относительно оси у - у ζ_2 0,000 H 6.1.3 условная либкость относительно оси у - у ζ_2 0,525 6.3.1 EN 1993-1-1 пошадь полного сечения (скатие) A 23,463 or ² 6.3.1 EN 1993-1-1 пошадь полного сечения (скатие) KT Ngk 551,14 H/m ² 6.3.2 EN 1993-1-1 <t< td=""><td></td><td>nun (6.61)</td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>		nun (6.61)						-
васчётное осевое усилие скатия N _{Ed} 40,00 кH касчётный излибающий момент Mgd 3200,00 кH со касчётный излибающий момент e,N 0,000 cH 6.1.3 касчётный излибающий момента L 8,000 M 6.1.3 касчётная длина элемента L 4,000 M 6.1.3 касчётная длина элемента L 4,000 M 6.1.3 касчётная длина элемента M 4,000 M 6.3.1 EN 193-1-1 касчёдикциент при изгибной форме потери услойчивости R 4,1000 R 6.3.2 EN 193-1-1 касчёдикциент Numa потере услойчивости плоской формы изгиба Nm <td>lараметр</td> <td>0</td> <td>бозн. Значен</td> <td>ие Ед.изи</td> <td>м. Пункт</td> <td>(формула</td> <td>a) EN 199</td> <td>)3-1</td>	lараметр	0	бозн. Значен	ие Ед.изи	м. Пункт	(формула	a) EN 199) 3-1
мед 3200,00 кН-см ксцентрионтет ем 0,000 см 6.1.3 еометрическая длина элемента L 8,000 м асчётная длина элемента L 8,000 м асчётная длина относительно оси у - у L _{cry} 8,000 м асчётная длина относительно оси y - у L _{cry} 0,087 асчётная длина относительно оси y - y K 0,087 асчётная длина относительно оси y - y K 0,087 (словная гибкость относительно оси z - z K 0,72 0,887 (словная гибкость относительно оси z - z K 0,742 6.3.1 EN 1993-1-1 Ілощадь полного сечения K 0,747 6.3.1 EN 1993-1-1 Ілощадь эфективного сечения (скатие) R 10,747 6.3.1 EN 1993-1-1 Істый коэффициент К 10,747 6.3.2 EN 1993-1-1 Істы Коэффициент К 10,000 M едукционный коэффициент	асчётное осевое усилие сжатия	N	Ed 40,)0 кH				
кащентрикитет е_N 0,000 см 6.1.3 еометрическая длина элемента L 8,000 M асчётная длина относительно оси у - у 8,000 M асчётная длина относительно оси y - у 8,000 M асчётная длина относительно оси y - y 8,000 M M сповная гибкость относительно оси y - y 0,012 0,022 0,025 сповная гибкость относительно оси z - z 0,024 0,024 0,024 олощадь полного сечения X 0,742 0,024 илощадь эффективного сечения (скатие) A 23,463 ch ² редел текучести fy 350 H/M ² ормативное значение сопротивления скатию NRk 551,14 KH <td>асчётный изгибающий момент</td> <td>м</td> <td>Ed 3200,</td> <td>)0 кН см</td> <td></td> <td></td> <td></td> <td></td>	асчётный изгибающий момент	м	Ed 3200,)0 кН см				
сеометрическая длина элемента L 8,000 м часчётная длина относительно оси у - у 4,000 M M часчётная длина относительно оси у - у 4,000 M M часчётная длина относительно оси у - у 4,000 M M словная гибкость относительно оси у - у 0,010 M M словная гибкость относительно оси у - у 0,020 M M словная гибкость относительно оси у - у 0,020 M M словная гибкость относительно оси у - у 0,020 M M словная гибкость относительно оси у - у X 0,722 0,525 M гедукционный коэффициент при изгибной форме потери устойчивости X 0,742 M 6.3.1 EN 1993-1-1 лющадь эффективного сечения (скатие) A 23,463 ch ² M M вастный коэффициент Коноффициент M 15,747 ch ² M M кара сечения Ка 551,14 KH M M M M M корффици	жсцентриситет	e	N 0,0	00 см	6.1.3			
Расчётная длина относительно оси у - у 8,000 м Расчётная длина относительно оси z - z L _{cr.z} 2,000 M Расчётная длина относительно оси z - z No.887 0,887 C Условная гибкость относительно оси y - у No.887 0,525 C Условная гибкость относительно оси z - z 0,742 0,525 C Условная гибкость относительно оси z - z 0,742 0,742 C 6.3.1 EN 1993-1-1 Условная гибкость относительно оси z - z X 0,742 C 6.3.1 EN 1993-1-1 Условная пибкость относительно оси z - z X 0,742 C 6.3.1 EN 1993-1-1 Условная пибкость относительно оси z - z X 0,742 C 6.3.1 EN 1993-1-1 Условная пибкость относительно оси z - z X 0,742 C 6.3.1 EN 1993-1-1 Условная пибкость относительно сительно сительно A 23,463 C C Пошадь эффективного сечения Скатие) A 15,747 C C Условная изорфициент Козффициент Козффициент No.00 C	еометрическая длина элемента	L	8,0	м ОС				
Расчётная длина относительно оси z - z 2,000 м Условная гибкость относительно оси y - y 0,887 0,887 Условная гибкость относительно оси z - z $\overline{\lambda_{2}}$ 0,525 0 Редукционный коэффициент при изгибной форме потери устойчивости X 0,742 0 6.3.1 EN 1993-1-1 Площадь полного сечения A 23,463 см ² 0.525 0 Площадь волного сечения (скатие) A 23,463 см ² 0.742 0 6.3.1 EN 1993-1-1 Пощадь эфективного сечения (скатие) A 23,463 см ² 0.742 0 10 0 <td>²асчётная длина относительно оси у - у</td> <td>L</td> <td>т,у 8,0</td> <td>м ОС</td> <td></td> <td></td> <td></td> <td></td>	² асчётная длина относительно оси у - у	L	т,у 8,0	м ОС				
Кловная пибкость относительно оси у - у Пощаль пликость относительно оси z - z Пощаль пликость относи пликость пликость относи пликость пликова Пощаль пликость относи пликова Пощаль пликость относи пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощаль пликова Пощ	асчётная длина относительно оси z - z	L	r,z 2,0	м ОС				
Кстовная пибкость относительно оси z - z N_2 0,525 Image: Comparison of the compa	/словная гибкость относительно оси у - у	λ,	0,8	37				
хедукционный коэффициент при изгибной форме потери устойчивости х 0,742 6.3.1 EN 1993-1-1 1лощадь полного сечения A 23,463 cn ² 1 1лощадь эффективного сечения (окатие) A _{eff} 15,747 ch ² 1 Іредел текучести f _y 350 H/m ² 1 1 1 Іастный коэффициент манение сопротивления скатию N _{Rk} 551,14 KH 1	′словная гибкость относительно оси z - z	λ,	0,5	25				
Iлощадь полного сечения A 23,463 ch ² Iлощадь эффективного сечения (сжатие) A _{eff} 15,747 ch ² Предел текучести f _V 350 H/m ² Гастный коэффициент YM1 1,000 V Кормативное значение сопротивления сжатию N _{Rk} 551,14 KH Редукционный коэффициент при потере устойчивости плоской формы изгиба XLT 0,802 6.3.2 EN 1993-1-1 Расчётный момент сопротивления сечения W 169,558 ch ³ 1 Кормативное значение сопротивления изгибающену моменту M _{Rk} 5934,53 H'cn	едукционный коэффициент при изгибной форме потери устойчивости	x	0,7	42	6.3.1 E	N 1993-1	-1	
Iлощадь эффективного сечения (скатие) A _{eff} 15,747 cn ² Ipeдел текучести f _y 350 H/нч ² IacTный коэффициент YM1 1,000 1 Icop ативное значение сопротивления скатию N _{Rk} 551,14 KH reдукционный коэффициент при потере устойчивости плоской формы изгиба X _L T 0,802 6.3.2 EN 1993-1-1 гасчётный момент сопротивления сечения W 169,558 cn ³ кормативное значение сопротивления изгибающему моменту M _{Rk} 5934,53 KH cn	Ілощадь полного сечения	A	23,4	53 см ²				
Предел текучести f _y 350 H/нн ² Настный коэффициент Y _{M1} 1,000 1	Ілощадь эффективного сечения (сжатие)	A	eff 15,7	47 см ²				
настный коэффициент Y _{M1} 1,000 кормативное значение сопротивления скатию N _{Rk} 551,14 кH седукционный коэффициент при потере устойчивости плоской формы изгиба X _{LT} 0,802 6.3.2 EN 1993-1-1 гасчётный момент сопротивления сечения W 169,558 cn ³ гормативное значение сопротивления изгибающему моменту M _{Rk} 5934,53 кH см Истод определения коэффициентов взаимодействия 1 1	Іредел текучести	fv	, 3	50 H/mm ²				
Кормативное значение сопротивления скатию N _{Rk} 551,14 кН Уедукционный коэффициент при потере устойчивости плоской формы изгиба X _{LT} 0,802 6.3.2 EN 1993-1-1 Угасчётный момент сопротивления сечения W 169,558 сн ³ кормативное значение сопротивления изгибающему моменту M _{Rk} 5934,53 кH см Истод определения коэффициентов взаимодействия 1 1	łастный коэффициент	Y	M1 1,0	00				
едукционный коэффициент при потере устойчивости плоской формы изгиба X _{LT} 0,802 6.3.2 EN 1993-1-1 асчётный момент сопротивления сечения W 169,558 сн ³ юрмативное значение сопротивления изгибающему моменту M _{Rk} 5934,53 кН см метод определения коэффициентов взаимодействия 1	ормативное значение сопротивления сжатию	N	Rk 551,	14 кН				
асчётный момент сопротивления сечения W 169,558 см ³ Іормативное значение сопротивления изгибающему моменту М _{Rk} 5934,53 кН см Іетод определения коэффициентов взаимодействия 1	едукционный коэффициент при потере устойчивости плоской формы изгиба	Xı	T 0,8)2	6.3.2 E	N 1993-1	-1	
юрмативное значение сопротивления изгибающему моменту М _{Rk} 5934,53 кН см Іетод определения коэффициентов взаимодействия 1	асчётный момент сопротивления сечения	w	169,5	58 см ³				
Летод определения коэффициентов взаимодействия 1	юрмативное значение сопротивления изгибающему моменту	м	Rk 5934,	53 кН-см				
	етод определения коэффициентов взаимодействия			1				
соэффициент взаимодействия k 0,984 Аплех A EN 1993-1-1	оэффициент взаимодействия	k	0,9	34	Annex	A EN 199	3-1-1	

арактеристики эффективного сечения Характеристики эффективного сечения (изгиб) Хар	рактеристики сечения нетто Ре	зультаты рас	нёта				ŀ
Троверка	Расчётное неравенст	во Знач	ение	Пункт	(формула	a) EN 199	93-1
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{c,Rd net}} \leq 1$	0,73	7 < 1	6.1.9			
Расчёт на поперечную силу	V _{Ec} /V _{b,Rd} ≤1	0,08	1 < 1	6.1.5			
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{Ed} + \Delta N}{\chi_{LT} M_{yRk} / }$	$\frac{d_{Ed}}{\gamma_{M1}} \le 1$ 0,75	9 < 1	6.3.3 E	N 1993-1	-1	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{Ed} + \Delta M}{\chi_{LT} M_{yRk} / \gamma}$	$\frac{Ed}{M_{11}} \leq 1$ 0,75	3 < 1	∕ 6.3.3 E	N 1993-1	-1	
овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{\textit{Ed}}}{N_{\textit{b,Rd}}}\right)^{0,8} + \left(\frac{M_{\textit{Ed}}}{M_{\textit{b,Rd}}}\right)^{0,8} \leq 1$	0,88	4<1	6.2.5			
Іроверка гибкости элемента	λ _{max} ≤ λ _u	83,3	< 200	1			
аранетр асчётное осевое усилие сжатия	O6o3	н. Значение 40,00	Ед.изм кН	. Пункт	(формула	a) EN 199	93-:
овместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	ствия (6.62)						
lараметр	Обоз	н. Значение	Ед.изм	. Пункт	(формула	a) EN 199) 3-
асчётное осевое усилие сжатия	N _{Ed}	40,00	κН				
асчётный изгибающий момент	M _{Ed}	3200,00	кН см				
жсцентриситет	e _N	0,000	СМ	6.1.3			
еометрическая длина элемента	L	8,000	м				
² асчётная длина относительно оси у - у	L _{a,y}	8,000	м				
асчётная длина относительно оси z - z	L _{cr,z}	2,000	м				
/словная гибкость относительно оси у - у	λ _γ	0,887					
/	C	0,525					
СЛОВНАЯ ГИОКОСТЬ ОТНОСИТЕЛЬНО ОСИ Z - Z	^ _z						
кловная гиокость относительно оси z - z Редукционный козффициент при изгибной форме потери устойчивости	×	0,873		6.3.1E	N 1993-1	-1	
сповная гиокость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения	^z X A	0,873 23,463	cm ²	6.3.1E	N 1993-1	1	
сповная пиокость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (скатие)	۸ _z X A A _{eff}	0,873 23,463 15,747	см ² см ²	6.3.1E	N 1993-1	1	
сповная пиокость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (окатие) Іредел текучести	۸ ₂ X A Aeff f _y	0,873 23,463 15,747 350	см ² см ² Н/мм ²	6.3.1E	N 1993-1	-1	
сповная пиокость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (окатие) Іредел текучести Іастный коэффициент	A ₂ X A A _{eff} f _y VM1	0,873 23,463 15,747 350 1,000	см ² см ² Н/мм ²	6.3.1E	N 1993-1	-1	
(словная пиокость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (скатие) Іредел текучести Іастный коэффициент Іормативное значение сопротивления скатию	۸ ₂ X A Aeff f _y YM1 N _{Rk}	0,873 23,463 15,747 350 1,000 551,14	см ² см ² Н/мм ² кН	6.3.1E	N 1993-1	-1	
(словная пискость относительно оси z - z Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (скатие) Іредел текучести Іастный коэффициент Іастный коэффициент Іормативное значение сопротивления скатию Редукционный коэффициент при потере устойчивости плоской формы изгиба	۸ ₂ X A A eff f _y YM1 N _{Rk} XLT	0,873 23,463 15,747 350 1,000 551,14 0,802	см ² см ² H/мм ² кН	6.3.1E	N 1993-1 N 1993-1	-1	
Сповная пискость относительно оси 2 - 2 Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (окатие) Іредел текучести Іастный коэффициент Іормативное значение сопротивления скатию Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент сопротивления сечения	۸ ₂ X A A eff f _y VM1 N _{Rk} X _{LT} W	0,873 0,873 23,463 15,747 350 1,000 551,14 0,802 169,558	см ² см ² H/мм ² кН	6.3.1E	N 1993-1 N 1993-1	-1	
Ксловная пискость относительно вси 2 - 2 Редукционный коэффициент при изгибной форме потери устойчивости Ллощадь полного сечения Ллощадь эффективного сечения (скатие) Предел текучести Частный коэффициент Нормативное значение сопротивления скатию Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба	۸ ₂ X A A eff f _y VM1 N _{Rk} X _{LT} W M _{Rk}	0,873 0,873 23,463 15,747 350 1,000 551,14 0,802 169,558 5934,53	см ² см ² H/мм ² кH	6.3.1E	N 1993-1 N 1993-1	-1	
Ссловная пискость относительно оси 2 - 2 Редукционный коэффициент при изгибной форме потери устойчивости Ілощадь полного сечения Ілощадь эффективного сечения (окатие) Іредел текучести Іастный коэффициент Іормативное значение сопротивления скатию Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукционный коэффициент при потере устойчивости плоской формы изгиба Редукциент сопротивления сечения Нормативное значение сопротивления изгибающему номенту Летира при редикациент ора проской ставия	۸ ₂ X A A eff f _y VM1 N _{Rk} X _{LT} W M _{Rk}	0,873 23,463 15,747 350 1,000 551,14 0,802 169,558 5934,53 1	см ² см ² H/мм ² кН см ³ кН ⁻ см	6.3.1E	N 1993-1 N 1993-1	-1	

С Результаты							-		×
Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Хара	ктеристики сечения	нетто Резу	льтат	ы расчёт	а				4
Проверка	Расчётное	неравенство		Значени	1e	Пункт (формул	a) EN 199	3-1-3
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed}}{M_{c,R}} + $	$\frac{\Delta M_{Ed}}{M_{et}} \le 1$		0,737 <	1 🗸	6.1.9			
Расчёт на поперечную силу	V _{Ec} /V	b,Rd ≤1		0,081 <	1 🗸	6.1.5			
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_y$	$y \frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk} / \gamma_N}$	$\frac{1}{1} \leq 1$	0,759 <	1 🗸	6.3.3 EN	1993-1	1-1	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy}$	$\frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk}/\gamma_M}$	≤ 1	0,753 <	1 🗸	6.3.3 EN	N 1993-1	1-1	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{Ed}}{N_{b,Rd}}\right)^{0,8} + \left(\frac{M_{b}}{M_{b}}\right)^{0,8}$	$\left(\frac{Ed}{Rd}\right)^{0,8} \le 1$		0,884 <	1	6.2.5			
Проверка гибкости элемента	λ _{ma}	_x ≤ λ _u		83,3 < 2	00 🗸				
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейсти Параметр	вия (п.6.2.5) О	бозн. Знач	ение В	Ед.изм. Г	Тункт	(формул	ia) EN 19	993-1-3	
Расчётное осевое усилие сжатия	N	Ed 4	0,00 +	сн					
Расчётный изгибающий момент	м	Ed 320	0,00 P	dH•см					
Эксцентриситет	e	N 0	,000 (м					
Геометрическая длина элемента	L	8	,000	1					
Расчётная длина относительно оси у - у	L	7,y 8	,000	1					
Расчётная длина относительно оси z - z	L	7,z 2	,000	1					
Условная гибкость относительно оси у - у	λ,	, o	,887						
Условная гибкость относительно оси z - z	λ,	; o	,525						
Предел текучести	f	,	350 H	H/MM ²					
Частный коэффициент	Y	M1 1	,000						
Расчётная несущая способность по изгибной форме потери устойчивости относительно оси у -	y N	yb,Rd 40	9,11	сH					
Расчётная несущая способность по изгибной форме потери устойчивости относительно оси z - 2	z N	zb,Rd 48	1,20 P	dН					
Расчётная несущая способность по крутильной/изгибно-крутильной форме потери устойчивост	и N	bTF,Rd 40	8,64	сH					
Расчётная несущая способность сжатого элемента (по изгибной, крутильной или изгибно-крути	ильной форме потє N	6,Rd 40	8,64	dH (5.2.5				
Упругий критический момент потери устойчивости плоской формы изгиба	м	or 1331	8,17	сН см					
Условная гибкость при потере устойчивости плоской формы изгиба	۸ <mark>.</mark>	т 0	,668						
Редукционный коэффициент	x	LT O	,802		5.3.2 E	:N 1993-	1-1		
Расчётный момент сопротивления сечения	W	169	,558 (м ³					
Расчётная несущая способность элемента при изгибе	М	b,Rd 475	7,86	сн-см б	5.2.4E	:N 1993-	1-3, 6.3	.2 EN 199)3-1-1
				Exce	ł	Закр	ыть	Спра	вка

Рисунок 2.3.41 - Результаты расчёта. Результаты проверок

D	Delta Engineering Software	CFSteel 4.3	1	страница 1
	http://www.CFSteel.ru	User		
	mailto:deltaing@mail.ru	EC3 CEN EC		12.01.2022
Верифи	кационный расчёт Example L ECCS TC7			
Длина эл	лемента	L	8,000	м
Расчётно	ое осевое усилие сжатия	N _{Ed}	40,00	кН
Расчётны	ый изгибающий момент (расчёт на устойчивость)	Mbed	3200,00	кН∙см
Расчётны	ый изгибающий момент (расчёт на прочность)	M _{sEd}	3200,00	кН∙см
Расчётна	ая длина относительно оси у - у	L _{cr,y}	8,000	м
Расчётна	ая длина относительно оси z - z	L _{cr,z}	2,000	м
Расчётна	ая длина: кручение	L _{cr,T}	4,000	м
Парамет	ры для расчёта на устойчивость плоской формы изгиба			
Расчётна	ая длина: устойчивость плоской формы изгиба	L _{er,LT}	4,000	м
Коэффиц	циент закрепления концов от поворота из плоскости изгиба	k	1	
			-	
Коэффиι	циент закрепления опорных сечений от искажения сечения	k _w	1	
Kasta		~ ~	1.070	
коэффиц	циент	C ₁	1,879	
коэффи	циент	C ₂	0,000	
Уровень	приложения поперечной нагрузки	ЭC		
Вид эпю	ры моментов	M 1	ΨMi	
Предель	ная гибкость	λ	200,0	
Сечение				
C 250x80)x40x2,5			
ECCS L				
		h	250,0	MM
te		t	2,5	MM
		b	80,0	MM
		c r	40,0	MM
		·	5,0	mm
h				
1 1	i da c			
1-6				
	s b'	t _{coat}	0,00	MM
		S	0,0	мм
Ослабле	ние сечения отверстиями			
	Стенка			
Диаметр	отверстия	d	18,0	MM
		a ₁	83,3	MM
		2	02.2	
-		a2	65,5	mm
Сталь				
Группа с	тандартов		EN	
Стандарт	r		EN 10147	
Сталь			5550GD	H/mm ²
пределт	екучести	Y	350	11/mm
Предел г	трочности	fu	420	H/MM [®]
Модуль	упругости	E	210000	H/mm²
Коэффиц	циент Пуассона	v	0,3	

Рисунок 2.3.42 – Результаты расчёта в Excel. Исходные данные

http://www.CFSteel.ru User	a 2
mailto:deltaing@mail.ru EC3 CEN EC 12.01.2	22

Верификационный расчёт Example L ECCS TC7

C 250x80x40x2,5 ECCS L

ĺ

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	Α	23,463 cm ²
Момент инерции относительно оси у - у	l _y	2162,083 см ⁴
Момент сопротивления сечения относительно оси у - у	Wy	172,967 см ³
Радиус инерции относительно сои у - у	iy	9,599 см
Момент инерции относительно оси z - z	l _z	386,333 _{CM} ⁴
Момент сопротивления сечения относительно оси z - z	Wz	48,292 cm ³
Радиус инерции относительно сои z - z	i,	4,058 см
Момент инерции при свободном кручении	l,	0,487182 см ⁴
Секториальный момент инерции	l _w	74457,671 см ⁶
Вес одного погонного метра профиля		18,94 кг/м

Рисунок 2.3.43 – Результаты расчёта в Excel. *Геометрические характеристики полного сечения*

r I	Delta Engineering Software http://www.CFSteel.ru	CFSteel 4.3 User	страница 3
U I	mailto:deltaing@mail.ru	EC3 CEN EC	12.01.2022

Верификационный расчёт Example L ECCS TC7

C 250x80x40x2,5 ECCS L

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A _{eff}	15,747 см ²
Момент инерции относительно оси у - у	l _{y eff}	1952,516 см ⁴
Момент сопротивления сечения для сжатого волокна	Wyterr	156,201 см ³
Момент сопротивления сечения для растянутого волокна	Wyberr	156,201 см ³
Радиус инерции относительно оси у - у	İ _{y err}	11,135 см
Момент инерции относительно оси z - z	l _{z eff}	350,362 см ⁴
Момент сопротивления сечения относительно оси z - z	W _{z eff}	43,795 cm ³
Радиус инерции относительно оси z - z	i _{z eff}	4,717 см

Рисунок 2.3.44 – Результаты расчёта в Excel. Геометрические характеристики эффективного сечения (сжатие)

0	Delta Engineering Software	CFSteel 4.3	страница 4	
	http://www.CFSteel.ru	User		
0	mailto:deltaing@mail.ru	EC3 CEN EC	12.01.2022	

Верификационный расчёт Example L ECCS TC7

C 250x80x40x2,5 ECCS L

Наименование характеристики	Обозн.	Значение Ед.изм.
Площадь поперечного сечения	A _{eff}	23,265 cm ²
Момент инерции относительно оси у - у	l _{y eff}	2135,913 см ⁴
Момент сопротивления сечения для сжатого волокна	Wyterr	169,558 cm ³
Момент сопротивления сечения для растянутого волокна	Wyberr	172,208 cm ³
Радиус инерции относительно оси у - у	İ _{y eff}	9,582 см
Момент инерции относительно оси z - z	l _{z eff}	376,661 см ⁴
Момент сопротивления сечения относительно оси z - z	Wzeff	47,083 см ³
Радиус инерции относительно оси z - z	i _{z eff}	4,024 см

Рисунок 2.3.45 – Результаты расчёта в Excel. Геометрические характеристики эффективного сечения (изгиб)

B	Delta Engineering Softw	vare	CFSteel 4.3		страница 6
	http://www.CFSteel.ru		User		
0	mailto:deltaing@mail.ru		EC3 CEN EC		12.01.2022
Верифи	кационный расчёт Exam	ple L ECCS TC7			
	Проверка	Расчётное неравенство	Значение		Пункт
					(формула)
					EN 1993-1-3
Расчёт н	а прочность сечения	$\frac{N_{Ed}}{M_{Ed}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{Ed}} \le 1$			
нетто пр	и сжатии с изгибом	Ne, Rd net Me, Rd net	0,737 < 1	✓	6.1.9
Расчёт н	а поперечную силу	V _{Ed} /V _{b,Rd} ≤1	0,081 < 1	 Image: A second s	6.1.5
Совмест	ное действие осевого	NEa + b MEa + AMEa	1		
сжатия и	и изгиба. Проверка по	Xy NRE /YMS Y XLT MyRE/YMS	0.750.44	1	6.3.3 EN
формул	е взаимодействия (6.61)		0,759 < 1	•	1993-1-1
Совмест	ное действие осевого	NEd A MEd + AMEd			
сжатия и	и изгиба. Проверка по	X= NRK /YM1 + NZY XLT MyRK/YM1 -		/	6.3.3 EN
формул	е взаимодействия (6.62)		0,753 < 1	×	1993-1-1
Совмест	ное действие осевого	(Non)0.8 (Mar)0.8			
сжатия и	и изгиба. Проверка по	$\left(\frac{N_{Ed}}{N_{B,Bd}}\right) + \left(\frac{N_{Ed}}{M_{B,Bd}}\right) \leq 1$			
формул	е взаимодействия		0,884 < 1	×	6.2.5
+	-				
Провери	а гибиости зламента	2 <2	83.3 < 200	1	
проверг	атиокости элемента	Amax 2 Au	05,5 < 200		_
Расчёт н	а прочность сечения не	по при сжатии с изгибом	-	-	
	Параметр	Обозн.	Значение	Ед.изм.	Пункт
					(формула)

			(формула) EN 1993-1-3
Расчётное осевое усилие	N _e .	40.00 KH	
сжатия	"Ed	40,00 MT	
Площадь сечения нетто	An	21,663 cm ²	
Предел текучести	f _y	350 H/mm ²	
Частный коэффициент	Y _{M2}	1,250	
Расчётная несущая			
способность сечения нетто при	N _{c,Rd net}	606,58 ĸH	
центральном сжатии			
Расчётный изгибающий			
момент (расчёт на прочность)	M _{s,Ed}	3200,00 кН-см	
Несущая способность			
поперечного сечения нетто при	M _{c,Rd net}	4771,88 кН-см	6.1.9
изгибе			
Расчёт на поперечную силу			

Рисунок 2.3.46,а – Результаты расчёта в Ехсеl. Проверки (начало)

Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) EN 1993-1-3
Расчётная поперечная сила	V _{Ed}	12,00 ĸH	
Расчётная высота стенки	Sw	247,5 мм	6.1.5
Расчётная толщина	t	2,5 мм	
Условная гибкость стенки	π_w	1,398	6.1.5
Расчётное сопротивление стали сдвигу	f _{bv}	120 H/mm²	6.1.5
Расчётная несущая			
способность сечения от действия поперечной силы	V _{b,Rd}	148,67 кН	(6.8)

Совместное действие осевого сжати	я и изгиба. Проверка	а по формуле вза	имодейст	вия (6.61)	
Параметр	Обозн.	Значение	Ед.изм.	Пункт	
				(формула)	
				EN 1993-1-3	
Расчётное осевое усилие	Nex	40.00	кН		
сжатия	1460	40,00			
Расчётный изгибающий момент	M _{Ed}	3200,00	кН∙см		
Эксцентриситет	e _N	0,000	см	6.1.3	
Геометрическая длина		e 000			
элемента	L	8,000	M		
Расчётная длина относительно		e 000			
оси у - у	Ler,y	8,000	M		
Расчётная длина относительно		2 000			
ОСИ Z - Z	Her,z	2,000	m		
Условная гибкость	x	0.887			
относительно оси у - у	·γ	0,007			
Условная гибкость	Χ.	0.525			
относительно оси z - z		-,			
Редукционный коэффициент				6.3.1 EN	
при изгибной форме потери	Х	0,742		1993-1-1	
устойчивости					
Площадь полного сечения	Α	23,463	CM ²		
Площадь эффективного	A.,,	15,747	CM ²		
сечения (сжатие)	- ten	,	cini -		
Предел текучести	fy	350	H/mm ²		
Частный коэффициент	YM1	1,000			
Нормативное значение	N	EE1 14			
сопротивления сжатию	INRK	551,14 кН			
Редукционный коэффициент					
при потере устойчивости		0.902		6.3.2 EN	
плоской формы изгиба	ALT	0,802 1993-1-1			
Расчётный момент	w	169 558	CM ³		
сопротивления сечения		100,000	CM		

Рисунок 2.3.46, б – Результаты расчёта в Ехсеl. Проверки (продолжение)

Нормативное значение сопротивления изгибающему моменту	M _{Rk}	5934,53 кН·см	
Метод определения коэффициентов взаимодействия		1	
Коэффициент взаимодействия	k	0,984	Annex A EN 1993-1-1

Совместное действие осевого сжатия	я и изгиба. Проверка	а по формуле взаим	лодейст	вия (6.62)
Параметр	Обозн.	Значение Е	д.изм.	Пункт (формула) EN 1993-1-3
Расчётное осевое усилие сжатия	N _{Ed}	40,00 Kł	1	
Расчётный изгибающий момент	M _{Ed}	3200,00 ĸł	Нсм	
Эксцентриситет	e _N	0,000 cm	٨	6.1.3
Геометрическая длина элемента	L	8,000 M		
Расчётная длина относительно оси у - у	L _{cr,y}	8,000 м		
Расчётная длина относительно оси z - z	L _{cr,z}	2,000 м		
Условная гибкость относительно оси у - у	π_{γ}	0,887		
Условная гибкость относительно оси z - z	$\overline{\lambda}_{z}$	0,525		
Редукционный коэффициент при изгибной форме потери устойчивости	x	0,873		6.3.1 EN 1993-1-1
, Площадь полного сечения	А	23,463 cm	۸ ²	
Площадь эффективного сечения (сжатие)	A _{eff}	15,747 cm	n ²	
Предел текучести	f _y	350 H	/mm²	
Частный коэффициент	YM1	1,000		
Нормативное значение сопротивления сжатию	N _{Rk}	551,14 ĸł	1	
Редукционный коэффициент при потере устойчивости плоской формы изгиба	XLT	0,802		6.3.2 EN 1993-1-1
Расчётный момент сопротивления сечения	w	169,558 cm	۸³	
пормативное значение сопротивления изгибающему моменту	M _{Rk}	5934,53 ĸł	Нсм	

Рисунок 2.3.46, в – Результаты расчёта в Ехсеl. Проверки (продолжение)

Метод определения			
коэффициентов		1	
взаимодействия			
Коэффициент взаимодействия	k	0,996	Annex A EN 1993-1-1
Совместное действие осевого сжати	ия и изгиба. Проверка	а по формуле взаимодей	іствия (п.6.2.5)
Параметр	Обозн.	Значение Ед.изм	 Пункт (формула) EN 1993-1-3
Расчётное осевое усилие	N	40.00 #8	
сжатия	"Ed	40,00 KH	
Расчётный изгибающий момент	M _{Ed}	3200,00 кН-см	
Эксцентриситет	e _N	0,000 см	
Геометрическая длина элемента	L	8,000 м	
Расчётная длина относительно оси у - у	L _{cr,y}	8,000 м	
Расчётная длина относительно оси z - z	L _{cr,z}	2,000 м	
Условная гибкость относительно оси у - у	⊼γ	0,887	
Условная гибкость относительно оси z - z	$\overline{\lambda}_z$	0,525	
Предел текучести	f _y	350 H/mm ²	
Частный коэффициент	Ymi	1,000	
Расчётная несущая способность по изгибной форме потери устойчивости относительно оси у - у	$N_{\gamma b, R d}$	409,11 ĸH	
Расчетная несущая способность по изгибной форме потери устойчивости относительно оси z - z	N _{zb,Rd}	481,20 кН	
Расчётная несущая способность по	N _{bTF,Rd}	408,64 ĸH	
Расчётная несущая способность сжатого элемента (по изгибной, крутильной или изгибно-крутильной форме потери устойчивости)	N _{b,Rd}	408,64 ĸH	6.2.5
Упругий критический момент потери устойчивости плоской формы изгиба	M _{cr}	13318,17 кН∙см	

Рисунок 2.3.46, г – Результаты расчёта в Ехсеl. Проверки (продолжение)

	Элементы		
VCROBHAR FURNOTE DOM DOTADA			
устойчивости плоской формы изгиба	${\bf X}_{LT}$	0,668	
Редукционный коэффициент	X _{LT}	0,802	6.3.2 EN 1993-1-1
Расчётный момент сопротивления сечения	w	169,558 см ³	
Расчётная несущая способность элемента при изгибе	$M_{b,Rd}$	4757,86 кН-см	6.2.4 EN 1993-1-3, 6.3.2 EN 1993-1-1
Проверка гибкости элемента			
Параметр	Обозн.	Значение Ед.изм.	Пункт (формула) EN 1993-1-
Максимальная гибкость	λ _{max}	83,3	
Предельная гибкость	λ.	200.0	

Рисунок 2.3.46, д – Результаты расчёта в Excel. *Проверки* (окончание)

На Рисунках 2.3.47 и 2.3.48 приведён ввод данных в программу для варианта с *сжатыми от изгиба наружными поясами* элемента и вычислением коэффициентов взаиаодействия k_{ij} по *Memody* 2. На Рисунке 2.3.49 представлен фрагмент результатов расчёта: *Общие данные*. На Рисунках 2.3.50 и 2.3.51 представлены фрагменты результатов проверок по формулам (6.61) и (6.62) [3].

Сжатие с изгибом [EC3 CEN EC]	×
Наименование элемента Верификационный расчёт Example L ECCS TC7 Длина элемента L 8	Сечение
Расчётное осевое усилие скатия N _{Ed} 40 кН Поперечная сила V _{Ed} 12 кН Момент для расчёта на устойчивость M _{bEd} 3200 кН·см	
 Вводить расчётные длины: Вводить к-ты приведения длины: Расчётная длина относительно оси у - у L_{σ,Y} м Коэф-т приведения k_y (L_{σ,y}/L) м Коэф-т приведения k_z (L_{σ,z}/L) м коэф-т приведения k_z (L_{σ,z}/L) м м Расчётная длина относительно оси z - z L_{σ,z} м Коэф-т приведения k_z (L_{σ,z}/L) м Расчётная длина: крутильная форма L_{σ,T} м Расчётная длина: плоская форма изгиба L_{σ,LT} м Устойчивость плоской формы изгиба Закрепление на концах 	
Коэффициент закрепления концов от поворота из плоскости изгиба k 1 v Коэффициент закрепления опорных сечений от искажения k _w 1 v Коэффициент C ₁ 1,14 коэффициент C ₂ 0 к Уровень приложения нагрузки	Выбрать С 250х80х40х2,5 ЕССS L Сталь Группа стандартов
Эпюра моментов Эпюра моментов С m → 14 ψ4 1 Ослабление Выбрать d 18 мм а ₁ 83,3 мм а ₂ 83,3 мм	Стандарт EN 10147
	Вычислить Закрыть Справка

Рисунок 2.3.47 – Ввод исходных данных: сжаты от изгиба наружные пояса элемента (вычисление коэффициентов взаимодействия k_{ij} по Memody 2)

Рисунок 2.3.48 - Ввод данных для вычисления коэффициентов: а) – $C_{m,x}$; б) – $C_{m,LT}$

Рисунок 2.3.49 – Результаты расчёта. Общие данные (сжаты от изгиба наружные пояса элемента, вычисление коэффициентов взаимодействия k_{ij} по Memody 2)

С Результаты				_		×
Характеристики эффективного сечения Характеристики эффективного сечения (изгиб) Ха	рактеристики сеч	ения нетто Ре	зультаты рас	чёта		•
Проверка	Расчётное н	еравенство	Значение	е Пу	нкт (форг	мула) (
Расчёт на прочность сечения нетто при скатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd net}} + \frac{M_{Ed}}{M_{c,Rd}} + \frac{M_{Ed}}{M_{c,R$	$\frac{\Delta M_{Ed}}{1 \text{ net}} \le 1$	0,737 < 1	6.1	1.9	
Расчёт на поперечную силу	V _{Fr} /V	. _{Rd} ≤1	0,081 < 1	6.1	1.5	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy}$	$\frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk}/\gamma_{M1}} \le$	1 0,657 < 1	l ✔ 6.3	3.3 EN 199	93-1-1
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy}$	$\frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk} / \gamma_{M1}} \le$	1 0,672 < 1	6.3	3.3 EN 199	93-1-1
Совместное действие осевого скатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{\rm Ed}}{N_{\rm b,Rd}}\right)^{\rm 0,8} + \left(\frac{M_{\rm E}}{M_{\rm b,c}}\right)^{\rm 0,8}$	$\left(\frac{a}{Ra}\right)^{0,8} \leq 1$	0,812 < 1	√ 6.2	2.5	
Проверка гибкости элемента	λ _{max}	≤ λ _u	83,3 < 20	0 🗸		
<						>
Совместное пейстане осевого сигатия и изгиба. Проверка по формуле взаимо лей	CT RUD (6 61)					
Совместное денствие осевого сжатия и изтика. проверка по формуле взаимодени Параметр	Обозн.	Значение Ед.	изм. Пункт	(формул	ia) EN 199	93-1-3
Расчётное осевое усилие сжатия	Neu	40.00 KH		(+	-,	
Расчётный изгибающий момент	Med	3200,00 KH	CM			
Эксцентриситет	e _N	0,000 CM	6.1.3			
Геометрическая длина элемента	L	8,000 M				
Расчётная длина относительно оси у - у	Law	8,000 M				
Расчётная длина относительно оси z - z	L _{0.7}	2,000 м				
Условная гибкость относительно оси у - у	λ_	0,887				
Условная гибкость относительно оси z - z	λ _z	0,525				
Редукционный коэффициент при изгибной форме потери устойчивости	x	0,742	6.3.1E	N 1993-	1-1	
Площадь полного сечения	A	23,463 cm ²				
Площадь эффективного сечения (сжатие)	A _{eff}	15,747 см ²				
Предел текучести	f _v	350 H/M	м ²			
Частный коэффициент	Y _{M1}	1,000				
Нормативное значение сопротивления сжатию	N _{Rk}	551,14 кH				
Редукционный коэффициент при потере устойчивости плоской формы изгиба	XLT	0,913	6.3.2 E	N 1993-	1-1	
	w	169,558 см ³				
Расчётный момент сопротивления сечения		5934,53 кH	CM			
Расчётный момент сопротивления сечения Нормативное значение сопротивления изгибающему моменту	MRk					
Расчётный момент сопротивления сечения Нормативное значение сопротивления изгибающему моменту Метод определения коэффициентов взаимодействия	M _{Rk}	2				
Расчётный момент сопротивления сечения Нормативное значение сопротивления изгибающему моменту Метод определения коэффициентов взаимодействия Коэффициент взаимодействия	M _{Rk} k	2 0,947	Annex	A EN 199	93-1-1	

Рисунок 2.3.50 – Результаты расчёта. *Результаты проверки по формуле* (6.61) [3] (вычисление коэффициентов взаимодействия k_{ij} по Memody 2)

Результаты					-		×
(арактеристики эффективного сечения Характеристики эффективного сечения (изгиб) Хар	рактеристики сеч	ения нетто	Результ	аты расч	ёта		4
Проверка	Расчётное неравенство		3	начение	Пу	нкт (фо р	мула)
Расчёт на прочность сечения нетто при сжатии с изгибом	$\frac{N_{Ed}}{N_{c,Rd \; net}} + \frac{M_{Ed} + \Delta M_{Ed}}{M_{c,Rd \; net}} \leq 1$		0	,737 < 1	√ 6.	1.9	
Расчёт на поперечную силу	V _{Ec} /V _{b,Rd} ≤1		0	,081 < 1	√ 6.	1.5	
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.61)	$\frac{N_{\textit{Ed}}}{\chi_{y}N_{\textit{Rk}}/\gamma_{\textit{M1}}} + k_{yy}\frac{M_{\textit{Ed}}+\Delta M_{\textit{Ed}}}{\chi_{\textit{LT}}M_{y\textit{Rk}}/\gamma_{\textit{M1}}} \leq$		<pre>1 0</pre>	,657 < 1	✓ 6.:	3.3 EN 19	93-1-
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия (6.62)	$\frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{Ed} + \Delta M_{Ed}}{\chi_{LT} M_{yRk} / \gamma_{M1}} \le 1$,672 < 1	√ 6.:	3.3 EN 19	93-1
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодействия	$\left(\frac{N_{\textit{Ed}}}{N_{\textit{b,Rd}}}\right)^{0,8} + \left(\frac{M_{\textit{Ed}}}{M_{\textit{b,Rd}}}\right)^{0,8} \leq 1$		0	,812 < 1	✓ 6.:	2.5	
Троверка гибкости элемента	$\lambda_{max} \leq \lambda_u$			3,3 < 200	 Image: A second s		
Совместное действие осевого сжатия и изгиба. Проверка по формуле взаимодейс	твия (6.62)						
Тараметр	Обозн	. Значение В	Ед.изм.	Пункт (¢	ормул	na) EN 199	93-1-
асчётное осевое усилие сжатия	N _{Ed}	40,00 +	κΗ				
Расчётный изгибающий момент	M _{Ed}	3200,00 +	кH•см				
Эксцентриситет	e _N	0,000 (EM	6.1.3			
еометрическая длина элемента	L	8,000 1	м				
Расчётная длина относительно оси у - у	L _{ar,y}	8,000 1	м				
Расчётная длина относительно оси z - z	L _{cr,z}	2,000 1	м				
/словная гибкость относительно оси у - у	λy	0,887					
/словная гибкость относительно оси z - z	$\overline{\lambda_z}$	0,525					
едукционный коэффициент при изгибной форме потери устойчивости	х	0,873		6.3.1 EN	1993-	1-1	
Лощадь полного сечения	А	23,463 (см ²				
Ілощадь эффективного сечения (скатие)	A _{eff}	15,747 (см ²				
Тредел текучести	f _v	350	Н/мм ²				
łастный коэффициент	Y _{M1}	1,000					
Нормативное значение сопротивления скатию	N _{Rk}	551,14	кH				
Редукционный коэффициент при потере устойчивости плоской формы изгиба	XLT	0,913		6.3.2 EN	1993-	1-1	
Расчётный момент сопротивления сечения	w	169,558	см ³				
юрмативное значение сопротивления изгибающему моменту	M _{Rk}	5934,53	кН°см				
Иетод определения коэффициентов взаимодействия		2					
Коэффициент взаимодействия	k	0,997		Annex A	EN 19	93-1-1	
		Ex	cel	Закры	пть	Спра	авка

Рисунок 2.3.51 – Результаты расчёта. *Результаты проверки по формуле (6.62) [3]* (вычисление коэффициентов взаимодействия k_{ij} по Memody 2)

ЛИТЕРАТУРА

- СП 260.1325800.2016: Конструкции стальные тонкостенные из холодногнутых оцинкованных профилей и гофрированных листов (с изм. 1 и 2) / Министерство строительства и жилищно-коммунального хозяйства Российской Федерации.– 2016.- 115 с.
- 2. СП 16.13330.2017: Стальные конструкции. Актуализированная редакция СНиП II-23-81* / Минрегион России.– 2017.- 145 с.
- 3. EN 1993-1-1:2005 Eurocode 3. Design of steel structures. Part 1-1: General rules and rules for buildings / European Committee for Standardization CEN, Brussels, 2005
- 4. EN 1993-1-3:2004 Eurocode 3. Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting / European Committee for Standardization CEN, Brussels, 2004
- 5. EN 1993-1-8:2005 Eurocode 3. Design of steel structures. Part 1-8: Design of joints / European Committee for Standardization CEN, Brussels, 2005
- 6. AISC 360-15 Specification for Structural Steel Buildings, ANSI/AISC, 2015
- AISI S100-2016 North American Specification for the Design of Cold-Formed Steel Structural Members, AISI, 2016
- 8. Commentary on North American Specification for the Design of Cold-Formed Steel Structural Members, AISI, 2001
- 9. Рекомендации по проектированию работающих на сдвиг болтовых соединений стальных строительных конструкций / ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкция им. Н.П. Мельникова, М., 1990, 17 с.
- 10. Worked Examples According to EN 1993-1-3 Eurocode 3, Part 1.3 / ECCS TC 7, № 123, 2008.-235 p.
- 11. Dubina D., Ungureanu V., Landolfo R. Design of Cold-formed Steel Structures / ECCS, 2012.-654 p.
- 12. CFSteel v.4.3. Документация. Том I. Руководство пользователя 2022, [Электронный ресурс]. Систем. Требования: Adobe Acrobat Reader, URL: <u>http://www.cfsteel.ru</u>
- 13. Wu, Y., Kulak. G.L. Shear lag in bolted single and double angle tension members / Y. Wu, G.L. Kulak // Structural Engineering Report No.187, June 1993
- 14. Kulak, G.L., Wu, E.Y. Shear lag in bolted angle tension members / G.L. Kulak, E.Y. Wu // Journal of Structural Engineering, ASCE, 123(9), 1997, pp. 1144-1152
- 15. Pan, C.L. Prediction of the bolted cold-formed channel sections in tension
- 16. Teh, L. H., Gilbert, B.P. Net section capacity of cold-reduced sheet steel channel braces bolted at the web / L. H. Teh, B.P. Gilbert // Journal of Structural Engineering, ASCE, 2013, pp. 740-747
- 17. Bolandim, E.A., Beck, A.T., Malite, M. Bolted connections in cold-formed steel: reliability analysis for rupture in net section / E.A. Bolandim, A.T. Beck, M. Malite // Journal of Structural Engineering, ASCE, 2013, pp. 748-756
- Ведяков, И.И., Одесский, П.Д., Соловьёв, Д.В. Несущая способность болтовых соединений лёгких конструкций из холодногнутых профилей малых толщин / И.И. Ведяков, П.Д. Одесский, Д.В.Соловьёв // Промышленное и гражданское строительство, 2010.- №3.- С.19-22
- Maiola, C.H., Malite, M., Gocalves, R. M., Neto, J.M. Structural behavior of bolted connections in cold-formed steel members, emphasizing the shear lag effect / C.H. Maiola, M. Malite, R. M. Gocalves, J.M. Neto // Sixteenth International Conference on Cold-Formed Steel Structures, Orlando, Florida USA, October 17-18, 2002

Литература

- 20. Panyanouvong M. Bearing strength of cold formed steel bolted connections in truss/thesis for the degree of master of science, University of North Texas, May 2012, 109 p.
- Wallace J.A., Shuster R.M., LaBoube R.A. Testing of Bolted Cold-Formed Steel Connections in Dearing (With and without Washers). Final Report //Canadian Cold Formed Research Group Department of Civil Engineering, University of Waterloo, Waterloo, Canada, March, 2001, 33 p
- 22. EN 1993-1-5:2003 Eurocode 3. Design of steel structures. Part 1-5: Plated structures elements / European Committee for Standardisation CEN, Brussels, 2003
- 23. Heinisuo, M., Kukkonen, J. Design of Cold-Formed Members Following New EN 1993-1-3 / Tampere University of Technology, 2005,- 21 p.
- 24. SX022a-EN-EU Calculation of effective section properties for a cold-formed lipped channel section in bending: Calculation sheet / Access steel, 2005, 8 p.
- 25. Young B., Rasmussen K.J.R. Design of lipped channel columns // Journal of Structural Engineering, Vol.124, No.2, 1998, pp.140-148.
- 26. Rules for member stability in EN 1993-1-1. Background documentation and design guidelines / European convention for constructional steelwork, ECCS Technical Committee 8 Stability, № 119, 2006.- 259 p.
- 27. BlueScope Steel Limited. LYSAGHT Zeds and Cees. User's guide for design and installation professionals, Part 1, 2014
- 28. Lightweight purlins. Technical Manual /Ruukki, www.ruukki.com, 35 p.
- 29. Ksztaltowniki typu Z, C, Σ // Blachy Pruszynski, <u>www.pruszynski.com.pl</u>, 204 p.
- 30. SSMA: Steel Stud Manufactures Association. Product Technical Guide, 2014, 72 p.
- 31. Wei-Wen Yu, LaBoube R.A. Cold-formed steel design // John Wiley & Sons, Inc., Fourth edition, 2010, 491 p.
- 32. Rules for member stability in EN 1993-1-1. Background documentation and design guidelines / European convention for constructional steelwork, ECCS Technical Committee 8 Stability, № 119, 2006.- 259 p.